|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
class EndpointHandler: |
|
def __init__(self, model_dir: str, **kw): |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) |
|
with init_empty_weights(): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_dir, torch_dtype="auto", trust_remote_code=True |
|
) |
|
self.model = load_checkpoint_and_dispatch( |
|
model, checkpoint=model_dir, device_map="auto" |
|
) |
|
def __call__(self, data): |
|
prompt = data["inputs"] |
|
|
|
inputs = self.tokenizer( |
|
prompt, return_tensors="pt" |
|
).to("cuda:0") |
|
|
|
out_ids = self.model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
) |
|
return { |
|
"generated_text": self.tokenizer.decode( |
|
out_ids[0], skip_special_tokens=True |
|
) |
|
} |
|
|
|
|