Last commit not found
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py. | |
# Below is the original copyright: | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch VideoLLaMA3 vision encoder model.""" | |
import importlib.util | |
import os.path as osp | |
import math | |
import warnings | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.nn.init import _calculate_fan_in_and_fan_out | |
from transformers.activations import ACT2FN | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import is_flash_attn_2_available | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_varlen_func | |
else: | |
flash_attn_varlen_func = None | |
try: | |
from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig | |
except ImportError: | |
spec = importlib.util.spec_from_file_location( | |
"configuration_videollama3_encoder", | |
osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"), | |
) | |
configuration_videollama3_encoder = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(configuration_videollama3_encoder) | |
Videollama3VisionEncoderConfig = getattr( | |
configuration_videollama3_encoder, | |
"Videollama3VisionEncoderConfig", | |
) | |
def _trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
def trunc_normal_tf_( | |
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 | |
) -> torch.Tensor: | |
"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \\leq \text{mean} \\leq b`. | |
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the | |
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 | |
and the result is subsequently scaled and shifted by the mean and std args. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
""" | |
with torch.no_grad(): | |
_trunc_normal_(tensor, 0, 1.0, a, b) | |
tensor.mul_(std).add_(mean) | |
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | |
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |
if mode == "fan_in": | |
denom = fan_in | |
elif mode == "fan_out": | |
denom = fan_out | |
elif mode == "fan_avg": | |
denom = (fan_in + fan_out) / 2 | |
variance = scale / denom | |
if distribution == "truncated_normal": | |
# constant is stddev of standard normal truncated to (-2, 2) | |
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | |
elif distribution == "normal": | |
with torch.no_grad(): | |
tensor.normal_(std=math.sqrt(variance)) | |
elif distribution == "uniform": | |
bound = math.sqrt(3 * variance) | |
with torch.no_grad(): | |
tensor.uniform_(-bound, bound) | |
else: | |
raise ValueError(f"invalid distribution {distribution}") | |
def lecun_normal_(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | |
def default_flax_embed_init(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="normal") | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: | |
orig_dtype = tensor.dtype | |
tensor = tensor.float() | |
cos = freqs.cos() | |
sin = freqs.sin() | |
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() | |
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() | |
output = (tensor * cos) + (rotate_half(tensor) * sin) | |
output = output.to(orig_dtype) | |
return output | |
class VisionRotaryEmbedding(nn.Module): | |
def __init__(self, dim: int, theta: float = 10000.0) -> None: | |
super().__init__() | |
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
def forward(self, seqlen: int) -> torch.Tensor: | |
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(seq, self.inv_freq) | |
return freqs | |
class Videollama3VisionEmbeddings(nn.Module): | |
def __init__(self, config: Videollama3VisionEncoderConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.patch_size = config.patch_size | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
padding="valid", | |
) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = hidden_states.view( | |
-1, self.config.num_channels, self.patch_size, self.patch_size | |
) | |
patch_embeds = self.patch_embedding(hidden_states) # shape = [*, width, grid, grid] | |
# embeddings = patch_embeds.flatten(2).transpose(1, 2) | |
embeddings = patch_embeds.view(-1, self.embed_dim) | |
return embeddings | |
class VisionAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
cu_seqlens: torch.Tensor, | |
rotary_pos_emb: torch.Tensor = None, | |
) -> torch.Tensor: | |
"""Input shape: Time x Channel""" | |
q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(q_len, self.num_heads, self.head_dim) | |
key_states = key_states.view(q_len, self.num_heads, self.head_dim) | |
value_states = value_states.view(q_len, self.num_heads, self.head_dim) | |
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool) | |
for i in range(1, len(cu_seqlens)): | |
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True | |
query_states = query_states.transpose(0, 1) | |
key_states = key_states.transpose(0, 1) | |
value_states = value_states.transpose(0, 1) | |
attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(0, 1) | |
attn_output = attn_output.reshape(q_len, -1) | |
attn_output = self.out_proj(attn_output) | |
return attn_output | |
class VisionFlashAttention2(VisionAttention): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
cu_seqlens: torch.Tensor, | |
rotary_pos_emb: torch.Tensor = None, | |
) -> torch.Tensor: | |
q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(q_len, self.num_heads, self.head_dim) | |
key_states = key_states.view(q_len, self.num_heads, self.head_dim) | |
value_states = value_states.view(q_len, self.num_heads, self.head_dim) | |
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() | |
attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( | |
q_len, -1 | |
) | |
attn_output = self.out_proj(attn_output) | |
return attn_output | |
class VisionSdpaAttention(VisionAttention): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
cu_seqlens: torch.Tensor, | |
rotary_pos_emb: torch.Tensor = None, | |
) -> torch.Tensor: | |
seq_length = hidden_states.shape[0] | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(seq_length, self.num_heads, self.head_dim) | |
key_states = key_states.view(seq_length, self.num_heads, self.head_dim) | |
value_states = value_states.view(seq_length, self.num_heads, self.head_dim) | |
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool) | |
for i in range(1, len(cu_seqlens)): | |
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True | |
query_states = query_states.transpose(0, 1) | |
key_states = key_states.transpose(0, 1) | |
value_states = value_states.transpose(0, 1) | |
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0) | |
attn_output = attn_output.transpose(0, 1) | |
attn_output = attn_output.reshape(seq_length, -1) | |
attn_output = self.proj(attn_output) | |
return attn_output | |
VISION_ATTENTION_CLASSES = { | |
"eager": VisionAttention, | |
"flash_attention_2": VisionFlashAttention2, | |
"sdpa": VisionSdpaAttention, | |
} | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Videollama3 | |
class Videollama3VisionMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class Videollama3VisionEncoderLayer(nn.Module): | |
def __init__(self, config: Videollama3VisionEncoderConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = Videollama3VisionMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
# Ignore copy | |
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: | |
hidden_states = hidden_states + self.self_attn( | |
self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb | |
) | |
hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states)) | |
return hidden_states | |
class Videollama3VisionTransformerEncoder(nn.Module): | |
def __init__(self, config: Videollama3VisionEncoderConfig): | |
super().__init__() | |
self.config = config | |
head_dim = config.hidden_size // config.num_attention_heads | |
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) | |
self.layers = nn.ModuleList([Videollama3VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def rot_pos_emb(self, grid_sizes, merge_sizes): | |
pos_ids = [] | |
for (t, h, w), merge_size in zip(grid_sizes, merge_sizes): | |
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) | |
hpos_ids = hpos_ids.reshape( | |
h // merge_size, | |
merge_size, | |
w // merge_size, | |
merge_size, | |
) | |
hpos_ids = hpos_ids.permute(0, 2, 1, 3) | |
hpos_ids = hpos_ids.flatten() | |
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) | |
wpos_ids = wpos_ids.reshape( | |
h // merge_size, | |
merge_size, | |
w // merge_size, | |
merge_size, | |
) | |
wpos_ids = wpos_ids.permute(0, 2, 1, 3) | |
wpos_ids = wpos_ids.flatten() | |
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) | |
pos_ids = torch.cat(pos_ids, dim=0) | |
max_grid_size = grid_sizes[:, 1:].max() | |
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) | |
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) | |
return rotary_pos_emb | |
def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor: | |
rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes) | |
cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32) | |
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) | |
for blk in self.layers: | |
if self.gradient_checkpointing and self.training: | |
hidden_states = self._gradient_checkpointing_func( | |
blk.__call__, | |
hidden_states, | |
cu_seqlens, | |
rotary_pos_emb | |
) | |
else: | |
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) | |
return hidden_states | |
class Videollama3VisionEncoderModel(PreTrainedModel): | |
config_class = Videollama3VisionEncoderConfig | |
base_model_prefix = "videollama3" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = [ | |
"Videollama3VisionEncoderLayer", | |
"Videollama3VisionEmbeddings", | |
] | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
def __init__(self, config: Videollama3VisionEncoderConfig): | |
super().__init__(config=config) | |
embed_dim = config.hidden_size | |
self.embeddings = Videollama3VisionEmbeddings(config) | |
self.encoder = Videollama3VisionTransformerEncoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.post_init() | |
def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor: | |
hidden_states = self.embeddings(pixel_values) | |
hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes) | |
hidden_states = self.post_layernorm(hidden_states) | |
hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0) | |
outputs = [] | |
for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes): | |
# NOTE: previous implementation, which supports downsampling with any factor | |
c = hidden_states.shape[-1] | |
hidden_states = hidden_states.view( | |
grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size, c | |
).permute(0, 1, 3, 2, 4, 5) | |
hidden_states = hidden_states.reshape( | |
grid_size[0], grid_size[1], grid_size[2], c | |
).permute(0, 3, 1, 2) | |
hidden_states = torch.nn.functional.interpolate( | |
hidden_states, | |
size=(grid_size[1] // merge_size, grid_size[2] // merge_size), | |
mode='bilinear' | |
) | |
hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c) | |
# NOTE: simplified implementation, which only supports downsampling with integer factor | |
# NOTE: this implementation is mathematically equivalent to the previous one when merge_size is 1 or 2 but may cause slightly different results | |
# hidden_states = hidden_states.view(-1, merge_size * merge_size, hidden_states.size(-1)) | |
# hidden_states = hidden_states.mean(dim=1) | |
outputs.append(hidden_states) | |
return torch.cat(outputs, dim=0) | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Embedding): | |
default_flax_embed_init(module.weight) | |
elif isinstance(module, VisionAttention): | |
nn.init.xavier_uniform_(module.q_proj.weight) | |
nn.init.xavier_uniform_(module.k_proj.weight) | |
nn.init.xavier_uniform_(module.v_proj.weight) | |
nn.init.xavier_uniform_(module.out_proj.weight) | |
nn.init.zeros_(module.q_proj.bias) | |
nn.init.zeros_(module.k_proj.bias) | |
nn.init.zeros_(module.v_proj.bias) | |
nn.init.zeros_(module.out_proj.bias) | |
elif isinstance(module, Videollama3VisionMLP): | |
nn.init.xavier_uniform_(module.fc1.weight) | |
nn.init.xavier_uniform_(module.fc2.weight) | |
nn.init.normal_(module.fc1.bias, std=1e-6) | |
nn.init.normal_(module.fc2.bias, std=1e-6) | |
elif isinstance(module, (nn.Linear, nn.Conv2d)): | |
lecun_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |