Last commit not found
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py. | |
# Below is the original copyright: | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Image processor class for VideoLLaMA3.""" | |
import math | |
from typing import Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature | |
from transformers.image_utils import ImageInput | |
from transformers.image_transforms import ( | |
convert_to_rgb, | |
resize, | |
to_channel_dimension_format, | |
) | |
from transformers.image_utils import ( | |
OPENAI_CLIP_MEAN, | |
OPENAI_CLIP_STD, | |
ChannelDimension, | |
ImageInput, | |
PILImageResampling, | |
VideoInput, | |
get_image_size, | |
infer_channel_dimension_format, | |
is_scaled_image, | |
is_valid_image, | |
make_list_of_images, | |
to_numpy_array, | |
) | |
from transformers.utils import TensorType, is_vision_available, logging | |
logger = logging.get_logger(__name__) | |
if is_vision_available(): | |
from PIL import Image | |
def is_valid_video(video) -> bool: | |
if isinstance(video, (list, tuple)): | |
return all(is_valid_image(frame) for frame in video) | |
elif isinstance(video, np.ndarray): | |
return video.ndim == 4 | |
elif isinstance(video, torch.Tensor): | |
return video.ndim == 4 | |
return False | |
def make_batched_images(images) -> List[List[ImageInput]]: | |
""" | |
Accepts images in list or nested list format, and makes a list of images for preprocessing. | |
Args: | |
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): | |
The input image. | |
Returns: | |
list: A list of images. | |
""" | |
if isinstance(images, (list, tuple)): | |
# list of images/videos | |
if not all(is_valid_video(image) or is_valid_image(image) for image in images): | |
raise ValueError(f"Could not make batched images from {images}") | |
return images | |
elif is_valid_video(images) or is_valid_image(images): | |
# single image/video | |
return [images] | |
raise ValueError(f"Could not make batched images from {images}") | |
def simple_batched_resize( | |
images, factor: int = 28, min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None | |
): | |
min_pixels = min_tokens * factor * factor | |
max_pixels = max_tokens * factor * factor | |
num_images = 0 | |
for image in images: | |
if is_valid_video(image): | |
num_images += len(image) | |
else: | |
num_images += 1 | |
image_sizes = [] | |
for image in images: | |
if is_valid_video(image): | |
image = image[0] | |
if isinstance(image, Image.Image): | |
height, width = image.size | |
else: | |
height, width = get_image_size(image, channel_dim=input_data_format) | |
image_sizes.append([height, width]) | |
tmp_image_sizes = [] | |
for height, width in image_sizes: | |
h_bar = round(height / factor) * factor | |
w_bar = round(width / factor) * factor | |
if h_bar * w_bar > (max_pixels // num_images): | |
beta = math.sqrt((height * width) / (max_pixels // num_images)) | |
h_bar = math.floor(height / beta / factor) * factor | |
w_bar = math.floor(width / beta / factor) * factor | |
# per image min_pixels | |
if h_bar * w_bar < min_pixels: | |
beta = math.sqrt(min_pixels / (height * width)) | |
h_bar = math.ceil(height * beta / factor) * factor | |
w_bar = math.ceil(width * beta / factor) * factor | |
tmp_image_sizes.append((h_bar, w_bar)) | |
image_sizes = tmp_image_sizes | |
return image_sizes | |
def batched_resize( | |
images, factors: List[int], min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None | |
): | |
image_sizes = [] | |
for image in images: | |
if is_valid_video(image): | |
num_frame = len(image) | |
image = image[0] | |
else: | |
num_frame = 1 | |
if isinstance(image, Image.Image): | |
height, width = image.size | |
else: | |
height, width = get_image_size(image, channel_dim=input_data_format) | |
image_sizes.append([num_frame, height, width]) | |
# global max_pixels | |
smart_scale_factors = 1.0 | |
total_tokens = 0 | |
for (num_frame, height, width), factor in zip(image_sizes, factors): | |
total_tokens += num_frame * math.ceil(height / factor) * math.ceil(width / factor) | |
# TODO: add min_pixels | |
if total_tokens > max_tokens: | |
beta = math.sqrt(total_tokens / max_tokens) | |
tmp_image_sizes = [] | |
for (_, height, width), factor in zip(image_sizes, factors): | |
h_bar = math.floor(height / beta / factor) * factor | |
w_bar = math.floor(width / beta / factor) * factor | |
tmp_image_sizes.append((h_bar, w_bar)) | |
image_sizes = tmp_image_sizes | |
else: | |
tmp_image_sizes = [] | |
for (_, height, width), factor in zip(image_sizes, factors): | |
height = round(height / factor) * factor | |
width = round(width / factor) * factor | |
tmp_image_sizes.append((height, width)) | |
image_sizes = tmp_image_sizes | |
return image_sizes | |
class Videollama3ImageProcessor(BaseImageProcessor): | |
r""" | |
Constructs a VideoLLaMA3 image processor that dynamically resizes images based on the original images. | |
Args: | |
do_resize (`bool`, *optional*, defaults to `True`): | |
Whether to resize the image's (height, width) dimensions. | |
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): | |
Resampling filter to use when resizing the image. | |
do_rescale (`bool`, *optional*, defaults to `True`): | |
Whether to rescale the image by the specified scale `rescale_factor`. | |
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): | |
Scale factor to use if rescaling the image. | |
do_normalize (`bool`, *optional*, defaults to `True`): | |
Whether to normalize the image. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): | |
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. | |
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): | |
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. | |
do_convert_rgb (`bool`, *optional*, defaults to `True`): | |
Whether to convert the image to RGB. | |
min_pixels (`int`, *optional*, defaults to `56 * 56`): | |
The min pixels of the image to resize the image. | |
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`): | |
The max pixels of the image to resize the image. | |
patch_size (`int`, *optional*, defaults to 14): | |
The spacial patch size of the vision encoder. | |
""" | |
model_input_names = ["pixel_values", "grid_sizes", "merge_sizes"] | |
def __init__( | |
self, | |
do_resize: bool = True, | |
resample: PILImageResampling = PILImageResampling.BICUBIC, | |
do_rescale: bool = True, | |
rescale_factor: Union[int, float] = 1 / 255, | |
do_normalize: bool = True, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = True, | |
min_tokens: int = 4 * 4, | |
max_tokens: int = 16384, | |
patch_size: int = 14, | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
self.do_resize = do_resize | |
self.resample = resample | |
self.do_rescale = do_rescale | |
self.rescale_factor = rescale_factor | |
self.do_normalize = do_normalize | |
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN | |
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD | |
self.min_tokens = min_tokens | |
self.max_tokens = max_tokens | |
self.patch_size = patch_size | |
self.do_convert_rgb = do_convert_rgb | |
def _preprocess( | |
self, | |
images: Union[ImageInput, VideoInput], | |
target_size: List[int], | |
merge_size: int = 1, | |
do_resize: bool = None, | |
resample: PILImageResampling = None, | |
do_rescale: bool = None, | |
rescale_factor: float = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = None, | |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
): | |
""" | |
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. | |
Args: | |
images (`ImageInput`): | |
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`. | |
target_size (`List[int]`): | |
The target size to resize the image to. Should be a list of two integers: [target_height, target_width]. | |
merge_size (`int`, *optional*, defaults to `1`): | |
The merge size after the vision encoder. | |
do_resize (`bool`, *optional*, defaults to `self.do_resize`): | |
Whether to resize the image. | |
resample (`PILImageResampling`, *optional*, defaults to `self.resample`): | |
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. | |
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | |
Whether to rescale the image. | |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | |
Scale factor to use if rescaling the image. | |
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | |
Whether to normalize the image. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | |
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | |
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | |
Whether to convert the image to RGB. | |
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): | |
The channel dimension format for the output image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- Unset: Use the channel dimension format of the input image. | |
input_data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format for the input image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | |
""" | |
images = make_list_of_images(images) | |
if do_convert_rgb: | |
images = [convert_to_rgb(image) for image in images] | |
# All transformations expect numpy arrays. | |
images = [to_numpy_array(image) for image in images] | |
if is_scaled_image(images[0]) and do_rescale: | |
logger.warning_once( | |
"It looks like you are trying to rescale already rescaled images. If the input" | |
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." | |
) | |
if input_data_format is None: | |
# We assume that all images have the same channel dimension format. | |
input_data_format = infer_channel_dimension_format(images[0]) | |
height, width = get_image_size(images[0], channel_dim=input_data_format) | |
resized_height, resized_width = height, width | |
processed_images = [] | |
for image in images: | |
if do_resize: | |
resized_height, resized_width = target_size | |
image = resize( | |
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format | |
) | |
if do_rescale: | |
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) | |
if do_normalize: | |
image = self.normalize( | |
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format | |
) | |
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) | |
processed_images.append(image) | |
patches = np.array(processed_images) | |
if data_format == ChannelDimension.LAST: | |
patches = patches.transpose(0, 3, 1, 2) | |
t = patches.shape[0] | |
channel = patches.shape[1] | |
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size | |
patches = patches.reshape( | |
t, | |
channel, | |
grid_h // merge_size, | |
merge_size, | |
self.patch_size, | |
grid_w // merge_size, | |
merge_size, | |
self.patch_size, | |
) | |
patches = patches.transpose(0, 2, 5, 3, 6, 1, 4, 7) | |
flatten_patches = patches.reshape( | |
t * grid_h * grid_w, channel * self.patch_size * self.patch_size | |
) | |
return flatten_patches, (t, grid_h, grid_w) | |
def preprocess( | |
self, | |
images: ImageInput, | |
do_resize: bool = None, | |
resample: PILImageResampling = None, | |
do_rescale: bool = None, | |
rescale_factor: float = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = None, | |
merge_size: Optional[Union[int, List[int]]] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
): | |
""" | |
Args: | |
images (`ImageInput`): | |
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | |
passing in images with pixel values between 0 and 1, set `do_rescale=False`. | |
do_resize (`bool`, *optional*, defaults to `self.do_resize`): | |
Whether to resize the image. | |
resample (`int`, *optional*, defaults to `self.resample`): | |
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only | |
has an effect if `do_resize` is set to `True`. | |
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | |
Whether to rescale the image. | |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | |
Rescale factor to rescale the image by if `do_rescale` is set to `True`. | |
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | |
Whether to normalize the image. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | |
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. | |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | |
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to | |
`True`. | |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | |
Whether to convert the image to RGB. | |
return_tensors (`str` or `TensorType`, *optional*): | |
The type of tensors to return. Can be one of: | |
- Unset: Return a list of `np.ndarray`. | |
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | |
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | |
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | |
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | |
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): | |
The channel dimension format for the output image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- Unset: Use the channel dimension format of the input image. | |
input_data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format for the input image. If unset, the channel dimension format is inferred | |
from the input image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | |
""" | |
do_resize = do_resize if do_resize is not None else self.do_resize | |
resample = resample if resample is not None else self.resample | |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale | |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor | |
do_normalize = do_normalize if do_normalize is not None else self.do_normalize | |
image_mean = image_mean if image_mean is not None else self.image_mean | |
image_std = image_std if image_std is not None else self.image_std | |
merge_size = merge_size if merge_size is not None else self.merge_size | |
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb | |
images = make_batched_images(images) | |
if isinstance(merge_size, (list, tuple)): | |
assert len(merge_size) == len(images), "Merge size must be the same length as images." | |
merge_sizes = merge_size | |
else: | |
merge_sizes = [merge_size for _ in images] | |
if all(merge_size == merge_sizes[0] for merge_size in merge_sizes): | |
target_sizes = simple_batched_resize( | |
images, | |
factor=self.patch_size * merge_sizes[0], | |
min_tokens=self.min_tokens, | |
max_tokens=self.max_tokens, | |
input_data_format=input_data_format, | |
) | |
else: | |
target_sizes = batched_resize( | |
images, | |
factors=[self.patch_size * merge_size for merge_size in merge_sizes], | |
min_tokens=self.min_tokens, | |
max_tokens=self.max_tokens, | |
input_data_format=input_data_format, | |
) | |
pixel_values, grid_sizes = [], [] | |
for image, merge_size, target_size in zip(images, merge_sizes, target_sizes): | |
patches, grid_size = self._preprocess( | |
image, | |
target_size=target_size, | |
merge_size=merge_size, | |
do_resize=do_resize, | |
resample=resample, | |
do_rescale=do_rescale, | |
rescale_factor=rescale_factor, | |
do_normalize=do_normalize, | |
image_mean=image_mean, | |
image_std=image_std, | |
data_format=data_format, | |
do_convert_rgb=do_convert_rgb, | |
input_data_format=input_data_format, | |
) | |
pixel_values.append(patches) | |
grid_sizes.append(grid_size) | |
pixel_values = np.concatenate(pixel_values, axis=0) | |
grid_sizes = np.array(grid_sizes) | |
merge_sizes = np.array(merge_sizes) | |
data = { | |
"pixel_values": pixel_values, | |
"grid_sizes": grid_sizes, | |
"merge_sizes": merge_sizes, | |
} | |
return BatchFeature(data=data, tensor_type=return_tensors) | |