cpi-connect commited on
Commit
96b8337
·
1 Parent(s): edc9979

Delete model.py

Browse files
Files changed (1) hide show
  1. model.py +0 -63
model.py DELETED
@@ -1,63 +0,0 @@
1
- from transformers import PreTrainedModel
2
- import torch
3
-
4
- from nugget_model_utils import CustomRobertaWithPOS as NuggetModel
5
- from args_model_utils import CustomRobertaWithPOS as ArgumentModel
6
- from realis_model_utils import CustomRobertaWithPOS as RealisModel
7
-
8
- from event_nugget_predict import create_dataloader as event_nugget_dataloader
9
- from event_realis_predict import create_dataloader as event_realis_dataloader
10
- from event_arg_predict import create_dataloader as event_argument_dataloader
11
-
12
- class CybersecurityKnowledgeGraphModel(PreTrainedModel):
13
-
14
- def __init__(self, config):
15
- super().__init__(config)
16
- self.event_nugget_model_path = config.event_nugget_model_path
17
- self.event_argument_model_path = config.event_argument_model_path
18
- self.event_realis_model_path = config.event_realis_model_path
19
-
20
- self.event_nugget_dataloader = event_nugget_dataloader
21
- self.event_argument_dataloader = event_argument_dataloader
22
- self.event_realis_dataloader = event_realis_dataloader
23
-
24
- self.event_nugget_model = NuggetModel(num_classes = 11)
25
- self.event_argument_model = ArgumentModel(num_classes = 43)
26
- self.event_realis_model = RealisModel(num_classes_realis = 4)
27
-
28
- self.event_nugget_model.load_state_dict(torch.load(self.event_nugget_model_path))
29
- self.event_realis_model.load_state_dict(torch.load(self.event_realis_model_path))
30
- self.event_argument_model.load_state_dict(torch.load(self.event_argument_model_path))
31
-
32
-
33
- def forward(self, text):
34
- nugget_dataloader, _ = self.event_nugget_dataloader(text)
35
- argument_dataloader, _ = self.event_argument_dataloader(text)
36
- realis_dataloader, _ = self.event_realis_dataloader(text)
37
-
38
- nugget_pred = self.forward_model(self.event_nugget_model, nugget_dataloader)
39
- no_nuggets = torch.all(nugget_pred == 0, dim=1)
40
-
41
- argument_preds = torch.empty(nugget_pred.size())
42
- realis_preds = torch.empty(nugget_pred.size())
43
- for idx, (batch, no_nugget) in enumerate(zip(nugget_pred, no_nuggets)):
44
- if no_nugget:
45
- argument_pred, realis_pred = torch.zeros(batch.size()), torch.zeros(batch.size())
46
- else:
47
- argument_pred = self.forward_model(self.event_argument_model, argument_dataloader)
48
- realis_pred = self.forward_model(self.event_realis_model, realis_dataloader)
49
- argument_preds[idx] = argument_pred
50
- realis_preds[idx] = realis_pred
51
-
52
- return {"nugget" : nugget_pred, "argument" : argument_pred, "realis" : realis_pred}
53
-
54
- def forward_model(self, model, dataloader):
55
- predicted_label = []
56
- for batch in dataloader:
57
- with torch.no_grad():
58
- print(batch.keys())
59
- logits = model(**batch)
60
-
61
- batch_predicted_label = logits.argmax(-1)
62
- predicted_label.append(batch_predicted_label)
63
- return torch.cat(predicted_label, dim=-1)