File size: 2,781 Bytes
b6de870 6e60558 b6de870 6e60558 b6de870 6e60558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: bigscience-openrail-m
base_model: ehsanaghaei/SecureBERT
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Cyber-ThreaD/SecureBERT-CyNER
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Cyber-ThreaD/SecureBERT-CyNER
This model is a fine-tuned version of [ehsanaghaei/SecureBERT](https://huggingface.co/ehsanaghaei/SecureBERT) on the [CyNER](https://github.com/aiforsec/CyNER) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0685
- Precision: 0.7334
- Recall: 0.8046
- F1: 0.7674
- Accuracy: 0.9836
It achieves the following results on the prediction set:
- Loss: 0.0993
- Precision: 0.7181
- Recall: 0.7564
- F1: 0.7367
- Accuracy: 0.9761
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1929 | 1.42 | 500 | 0.0685 | 0.7334 | 0.8046 | 0.7674 | 0.9836 |
| 0.048 | 2.84 | 1000 | 0.0745 | 0.8054 | 0.7931 | 0.7992 | 0.9837 |
| 0.0299 | 4.26 | 1500 | 0.0720 | 0.7936 | 0.8493 | 0.8205 | 0.9857 |
| 0.0199 | 5.68 | 2000 | 0.0846 | 0.8049 | 0.8327 | 0.8186 | 0.9848 |
| 0.014 | 7.1 | 2500 | 0.0878 | 0.7909 | 0.8455 | 0.8173 | 0.9847 |
| 0.0098 | 8.52 | 3000 | 0.0907 | 0.7830 | 0.8250 | 0.8035 | 0.9845 |
| 0.0073 | 9.94 | 3500 | 0.0917 | 0.7946 | 0.8301 | 0.8120 | 0.9852 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
### Citing & Authors
If you use the model kindly cite the following work
```
@inproceedings{deka2024attacker,
title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset},
author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa},
booktitle={International Conference on Web Information Systems Engineering},
pages={255--270},
year={2024},
organization={Springer}
}
```
|