File size: 7,185 Bytes
2c2ab80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
base_model:
- arcee-ai/Virtuoso-Small-v2
- sometimesanotion/Qwenvergence-14B-v3-Prose
- sthenno/tempesthenno-ppo-ckpt40
- CultriX/Enhanced-TIES-Base-v1
library_name: transformers
tags:
- mergekit
- merge

---
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using [CultriX/Enhanced-TIES-Base-v1](https://huggingface.co/CultriX/Enhanced-TIES-Base-v1) as a base.

### Models Merged

The following models were included in the merge:
* [arcee-ai/Virtuoso-Small-v2](https://huggingface.co/arcee-ai/Virtuoso-Small-v2)
* [sometimesanotion/Qwenvergence-14B-v3-Prose](https://huggingface.co/sometimesanotion/Qwenvergence-14B-v3-Prose)
* [sthenno/tempesthenno-ppo-ckpt40](https://huggingface.co/sthenno/tempesthenno-ppo-ckpt40)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
name: SuperMerge-LayeredTIES-v1
merge_method: della_linear
base_model: CultriX/Enhanced-TIES-Base-v1 # Referencing the TIES base model defined below (now inlined)
tokenizer_source: base
dtype: float32
out_dtype: bfloat16
parameters:
  int8_mask: true
  normalize: true
  rescale: false
  t: [0.1, 0.3, 0.7, 0.7, 0.4, 0.2]

slices:
  - sources:
      - model: CultriX/Enhanced-TIES-Base-v1 # Referencing inlined TIES base
        layer_range: [0, 8]
        parameters:
          weight: 0.7
      - model: arcee-ai/Virtuoso-Small-v2
        layer_range: [0, 8]
        parameters:
          weight: 0.3
      - model: sthenno/tempesthenno-ppo-ckpt40
        layer_range: [0, 8]
        parameters:
          weight: 0.0
      - model: sometimesanotion/Qwenvergence-14B-v3-Prose
        layer_range: [0, 8]
        parameters:
          weight: 0.0
  - sources:
      - model: CultriX/Enhanced-TIES-Base-v1 # Referencing inlined TIES base
        layer_range: [8, 16]
        parameters:
          weight: 0.4
      - model: arcee-ai/Virtuoso-Small-v2
        layer_range: [8, 16]
        parameters:
          weight: 0.3
      - model: sthenno/tempesthenno-ppo-ckpt40
        layer_range: [8, 16]
        parameters:
          weight: 0.3
      - model: sometimesanotion/Qwenvergence-14B-v3-Prose
        layer_range: [8, 16]
        parameters:
          weight: 0.0
  - sources:
      - model: CultriX/Enhanced-TIES-Base-v1 # Referencing inlined TIES base
        layer_range: [16, 24]
        parameters:
          weight: 0.2
      - model: arcee-ai/Virtuoso-Small-v2
        layer_range: [16, 24]
        parameters:
          weight: 0.2
      - model: sthenno/tempesthenno-ppo-ckpt40
        layer_range: [16, 24]
        parameters:
          weight: 0.5
      - model: sometimesanotion/Qwenvergence-14B-v3-Prose
        layer_range: [16, 24]
        parameters:
          weight: 0.1
  - sources:
      - model: CultriX/Enhanced-TIES-Base-v1 # Referencing inlined TIES base
        layer_range: [24, 32]
        parameters:
          weight: 0.25
      - model: arcee-ai/Virtuoso-Small-v2
        layer_range: [24, 32]
        parameters:
          weight: 0.1
      - model: sthenno/tempesthenno-ppo-ckpt40
        layer_range: [24, 32]
        parameters:
          weight: 0.4
      - model: sometimesanotion/Qwenvergence-14B-v3-Prose
        layer_range: [24, 32]
        parameters:
          weight: 0.25
  - sources:
      - model: CultriX/Enhanced-TIES-Base-v1 # Referencing inlined TIES base
        layer_range: [32, 40]
        parameters:
          weight: 0.4
      - model: arcee-ai/Virtuoso-Small-v2
        layer_range: [32, 40]
        parameters:
          weight: 0.0
      - model: sthenno/tempesthenno-ppo-ckpt40
        layer_range: [32, 40]
        parameters:
          weight: 0.2
      - model: sometimesanotion/Qwenvergence-14B-v3-Prose
        layer_range: [32, 40]
        parameters:
          weight: 0.4
  - sources:
      - model: CultriX/Enhanced-TIES-Base-v1 # Referencing inlined TIES base
        layer_range: [40, 48]
        parameters:
          weight: 0.6
      - model: arcee-ai/Virtuoso-Small-v2
        layer_range: [40, 48]
        parameters:
          weight: 0.0
      - model: sthenno/tempesthenno-ppo-ckpt40
        layer_range: [40, 48]
        parameters:
          weight: 0.1
      - model: sometimesanotion/Qwenvergence-14B-v3-Prose
        layer_range: [40, 48]
        parameters:
          weight: 0.3



# Commentary:
# =============================================================================
# SuperMerge-LayeredTIES-v1 Commentary:
#
# This configuration combines the strengths of both Enhanced-LayeredSlerp-v1 and SuperMerge-Enhanced-v1.
# It leverages the robust foundation of a TIES-merged base model (Enhanced-TIES-Base-v1) and applies
# the layer-wise module approach and fine-grained weight control from SuperMerge-Enhanced-v1 in a SLERP merge.
#
# Key Features:
#   - TIES-Merged Base Foundation:  Uses 'Enhanced-TIES-Base-v1' as the base model for the SLERP merge.
#     This TIES base provides a selectively merged and potentially more efficient starting point, incorporating
#     strengths from multiple models (Virtuoso, Phi-4, Qwenvergence, DeepSeek) with density control.
#
#   - Layer-wise Module Integration in SLERP:  Maintains the module-based slice structure from SuperMerge-Enhanced-v1.
#     The SLERP merge now combines the TIES-merged base with specialized modules for Reasoning, IFEval, and MATH/Knowledge
#     at different layer ranges, using explicit weights for fine-grained control.
#
#   - Benchmark-Driven Iterative Weight Tuning:  The configuration is designed to be optimized through a
#     benchmark-driven iterative weight tuning process (as described in the refined SuperMerge-Enhanced-v1 approach).
#     The initial weights provided are starting points and need to be systematically tuned based on benchmark results.
#
# Tuning Process (Same as Refined SuperMerge-Enhanced-v1):
#   1. Initial Benchmarking: Run a full benchmark suite.
#   2. Performance Analysis: Examine per-benchmark scores and compare to source models.
#   3. Targeted Weight Adjustments: Adjust layer weights based on performance analysis (e.g., increase IFEval module weight
#      in early layers if IFEval is weak).
#   4. Iterate: Repeat steps 1-3. Make small, incremental adjustments in each iteration.
#
# Rationale:
#   - By using a TIES-merged base, we aim to create a more robust and potentially efficient foundation for the SLERP merge.
#   - The layer-wise module approach and fine-grained weights in SLERP still allow for precise control over the blending
#     of specialized capabilities at different network depths, building upon the solid TIES base.
#   - The emphasis on a benchmark-driven iterative weight tuning process remains crucial for achieving optimal performance.
#
# Next Steps:
#   - Implement this configuration using MergeKit.
#   - Run initial benchmarks to establish a baseline.
#   - Begin the iterative benchmark-driven weight tuning process to optimize performance.
# =============================================================================
```