Update generate.py
Browse files- generate.py +81 -35
generate.py
CHANGED
@@ -1,15 +1,83 @@
|
|
1 |
import torch
|
2 |
from transformers.utils import logging
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
logger = logging.get_logger(__name__)
|
5 |
|
6 |
@torch.no_grad()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def generate(
|
8 |
self,
|
9 |
input_ids,
|
10 |
attention_mask=None,
|
11 |
max_length=None,
|
|
|
|
|
|
|
|
|
12 |
temperature=1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
n_ahead=4,
|
14 |
n_ahead_talk=4,
|
15 |
merged_talk_heads=True,
|
@@ -23,10 +91,8 @@ def generate(
|
|
23 |
use_weighted_talk_head=True,
|
24 |
trust_remote_code=True,
|
25 |
torch_dtype=torch.bfloat16,
|
26 |
-
**
|
27 |
):
|
28 |
-
batch_size, seq_length = input_ids.shape
|
29 |
-
|
30 |
# Set model attributes
|
31 |
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
32 |
self.merged_talk_heads = merged_talk_heads
|
@@ -51,38 +117,18 @@ def generate(
|
|
51 |
self.rm_initialized = True
|
52 |
self.original_mode = False
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
while input_ids.shape[-1] < max_length:
|
58 |
-
# Get the model outputs
|
59 |
-
model_outputs = self(
|
60 |
-
input_ids[~finished_generating],
|
61 |
-
attention_mask=attention_mask[~finished_generating] if attention_mask is not None else None,
|
62 |
-
**kwargs
|
63 |
-
)
|
64 |
-
logits = model_outputs.logits[:, -1, :]
|
65 |
-
|
66 |
-
# Apply temperature scaling
|
67 |
-
logits = logits / temperature
|
68 |
-
|
69 |
-
# Sample the next token
|
70 |
-
next_token_logits = logits
|
71 |
-
next_token_id = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(-1)
|
72 |
-
|
73 |
-
# Assign the sampled token to the sequences that are still generating
|
74 |
-
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1)], dim=-1)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
# Return the generated token IDs and attention mask
|
88 |
return input_ids, attention_mask
|
|
|
1 |
import torch
|
2 |
from transformers.utils import logging
|
3 |
+
from transformers.generation.utils import (
|
4 |
+
GenerationMixin,
|
5 |
+
validate_stopping_criteria,
|
6 |
+
StoppingCriteriaList,
|
7 |
+
)
|
8 |
|
9 |
logger = logging.get_logger(__name__)
|
10 |
|
11 |
@torch.no_grad()
|
12 |
+
def custom_generate(model, input_ids, attention_mask, max_new_tokens, streamer, **kwargs):
|
13 |
+
finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
|
14 |
+
for cur_token_idx in range(max_new_tokens):
|
15 |
+
# Sample the next token
|
16 |
+
new_ids = model(
|
17 |
+
input_ids[~finished_generating],
|
18 |
+
attention_mask=attention_mask[~finished_generating]
|
19 |
+
)['logits']
|
20 |
+
# Mask out the start and end thought tokens so we don't accidentally sample them
|
21 |
+
new_ids[:, :, model.tokenizer.vocab_size:] = -float("inf")
|
22 |
+
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
23 |
+
# Find the index of the last token that is not padding
|
24 |
+
base_answer_ids = input_ids[answer_idx]
|
25 |
+
new_answer_ids = new_ids[list_idx]
|
26 |
+
last_token_idx = (base_answer_ids != model.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
27 |
+
new_ids_sampled = torch.multinomial(
|
28 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / kwargs.get("temperature", 1.0), dim=-1), 1)
|
29 |
+
# Assign the new id to the last token
|
30 |
+
if last_token_idx + 1 >= len(base_answer_ids):
|
31 |
+
# Add padding everywhere
|
32 |
+
new_padding = torch.full((len(input_ids), 1), model.tokenizer.pad_token_id, dtype=torch.long,
|
33 |
+
device=input_ids.device)
|
34 |
+
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
35 |
+
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
36 |
+
attention_mask[answer_idx, last_token_idx + 1] = 1
|
37 |
+
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
38 |
+
if new_ids_sampled == model.tokenizer.eos_token_id or new_ids_sampled == model.tokenizer.bos_token_id or new_ids_sampled == model.tokenizer.pad_token_id:
|
39 |
+
finished_generating[answer_idx] = 1
|
40 |
+
# Check if the end token is generated
|
41 |
+
if new_ids_sampled == model.tokenizer.convert_tokens_to_ids("<|/assistant|>"):
|
42 |
+
finished_generating[answer_idx] = 1
|
43 |
+
if finished_generating.all():
|
44 |
+
break
|
45 |
+
streamer.put(new_ids_sampled)
|
46 |
+
return input_ids, attention_mask
|
47 |
+
|
48 |
def generate(
|
49 |
self,
|
50 |
input_ids,
|
51 |
attention_mask=None,
|
52 |
max_length=None,
|
53 |
+
min_length=None,
|
54 |
+
do_sample=None,
|
55 |
+
early_stopping=None,
|
56 |
+
num_beams=None,
|
57 |
temperature=1.0,
|
58 |
+
top_k=None,
|
59 |
+
top_p=None,
|
60 |
+
repetition_penalty=None,
|
61 |
+
bad_words_ids=None,
|
62 |
+
bos_token_id=None,
|
63 |
+
pad_token_id=None,
|
64 |
+
eos_token_id=None,
|
65 |
+
length_penalty=None,
|
66 |
+
no_repeat_ngram_size=None,
|
67 |
+
num_return_sequences=None,
|
68 |
+
decoder_start_token_id=None,
|
69 |
+
use_cache=None,
|
70 |
+
num_beam_groups=None,
|
71 |
+
diversity_penalty=None,
|
72 |
+
prefix_allowed_tokens_fn=None,
|
73 |
+
output_attentions=None,
|
74 |
+
output_hidden_states=None,
|
75 |
+
output_scores=None,
|
76 |
+
return_dict_in_generate=None,
|
77 |
+
forced_bos_token_id=None,
|
78 |
+
forced_eos_token_id=None,
|
79 |
+
remove_invalid_values=None,
|
80 |
+
synced_gpus=None,
|
81 |
n_ahead=4,
|
82 |
n_ahead_talk=4,
|
83 |
merged_talk_heads=True,
|
|
|
91 |
use_weighted_talk_head=True,
|
92 |
trust_remote_code=True,
|
93 |
torch_dtype=torch.bfloat16,
|
94 |
+
**model_kwargs,
|
95 |
):
|
|
|
|
|
96 |
# Set model attributes
|
97 |
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
98 |
self.merged_talk_heads = merged_talk_heads
|
|
|
117 |
self.rm_initialized = True
|
118 |
self.original_mode = False
|
119 |
|
120 |
+
# Initialize a TextStreamer for streaming the generated text
|
121 |
+
streamer = TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
# Generate using the custom generate function
|
124 |
+
input_ids, attention_mask = custom_generate(
|
125 |
+
self,
|
126 |
+
input_ids,
|
127 |
+
attention_mask,
|
128 |
+
max_length,
|
129 |
+
streamer,
|
130 |
+
temperature=temperature,
|
131 |
+
**model_kwargs,
|
132 |
+
)
|
133 |
|
|
|
134 |
return input_ids, attention_mask
|