Crystalcareai commited on
Commit
d829dfc
·
verified ·
1 Parent(s): a2e5c4f

Delete configuration_mistral.py

Browse files
Files changed (1) hide show
  1. configuration_mistral.py +0 -172
configuration_mistral.py DELETED
@@ -1,172 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ Mistral model configuration"""
16
-
17
- from ...configuration_utils import PretrainedConfig
18
- from ...utils import logging
19
-
20
-
21
- logger = logging.get_logger(__name__)
22
-
23
- MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
- "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
25
- "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
26
- }
27
-
28
-
29
- class MistralConfig(PretrainedConfig):
30
- r"""
31
- This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
32
- Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
33
- with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
34
-
35
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
36
- [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
37
-
38
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
- documentation from [`PretrainedConfig`] for more information.
40
-
41
-
42
- Args:
43
- vocab_size (`int`, *optional*, defaults to 32000):
44
- Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
45
- `inputs_ids` passed when calling [`MistralModel`]
46
- hidden_size (`int`, *optional*, defaults to 4096):
47
- Dimension of the hidden representations.
48
- intermediate_size (`int`, *optional*, defaults to 14336):
49
- Dimension of the MLP representations.
50
- num_hidden_layers (`int`, *optional*, defaults to 32):
51
- Number of hidden layers in the Transformer encoder.
52
- num_attention_heads (`int`, *optional*, defaults to 32):
53
- Number of attention heads for each attention layer in the Transformer encoder.
54
- num_key_value_heads (`int`, *optional*, defaults to 8):
55
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
- by meanpooling all the original heads within that group. For more details checkout [this
60
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
61
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
- The non-linear activation function (function or string) in the decoder.
63
- max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
64
- The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
65
- allows sequence of up to 4096*32 tokens.
66
- initializer_range (`float`, *optional*, defaults to 0.02):
67
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
- The epsilon used by the rms normalization layers.
70
- use_cache (`bool`, *optional*, defaults to `True`):
71
- Whether or not the model should return the last key/values attentions (not used by all models). Only
72
- relevant if `config.is_decoder=True`.
73
- pad_token_id (`int`, *optional*):
74
- The id of the padding token.
75
- bos_token_id (`int`, *optional*, defaults to 1):
76
- The id of the "beginning-of-sequence" token.
77
- eos_token_id (`int`, *optional*, defaults to 2):
78
- The id of the "end-of-sequence" token.
79
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
- Whether the model's input and output word embeddings should be tied.
81
- rope_theta (`float`, *optional*, defaults to 10000.0):
82
- The base period of the RoPE embeddings.
83
- sliding_window (`int`, *optional*, defaults to 4096):
84
- Sliding window attention window size. If not specified, will default to `4096`.
85
- attention_dropout (`float`, *optional*, defaults to 0.0):
86
- The dropout ratio for the attention probabilities.
87
-
88
- ```python
89
- >>> from transformers import MistralModel, MistralConfig
90
-
91
- >>> # Initializing a Mistral 7B style configuration
92
- >>> configuration = MistralConfig()
93
-
94
- >>> # Initializing a model from the Mistral 7B style configuration
95
- >>> model = MistralModel(configuration)
96
-
97
- >>> # Accessing the model configuration
98
- >>> configuration = model.config
99
- ```"""
100
-
101
- model_type = "mistral"
102
- keys_to_ignore_at_inference = ["past_key_values"]
103
-
104
- def __init__(
105
- self,
106
- vocab_size=32000,
107
- hidden_size=4096,
108
- intermediate_size=14336,
109
- num_hidden_layers=32,
110
- num_attention_heads=32,
111
- num_key_value_heads=8,
112
- hidden_act="silu",
113
- max_position_embeddings=4096 * 32,
114
- initializer_range=0.02,
115
- rms_norm_eps=1e-6,
116
- use_cache=True,
117
- pad_token_id=None,
118
- bos_token_id=1,
119
- eos_token_id=2,
120
- tie_word_embeddings=False,
121
- rope_theta=10000.0,
122
- sliding_window=4096,
123
- attention_dropout=0.0,
124
- max_thoughts=16,
125
- merged_talk_heads=True,
126
- merged_lm_and_talk_heads=False,
127
- merged_lm_and_think_heads=True,
128
- use_concat_talk_head=True,
129
- use_shallow_think=True,
130
- use_shallow_talk=False,
131
- use_complex_think_head=False,
132
- use_complex_talk_head=True,
133
- use_weighted_talk_head=True,
134
- **kwargs,
135
- ):
136
- self.vocab_size = vocab_size
137
- self.max_position_embeddings = max_position_embeddings
138
- self.hidden_size = hidden_size
139
- self.intermediate_size = intermediate_size
140
- self.num_hidden_layers = num_hidden_layers
141
- self.num_attention_heads = num_attention_heads
142
- self.sliding_window = sliding_window
143
-
144
- # for backward compatibility
145
- if num_key_value_heads is None:
146
- num_key_value_heads = num_attention_heads
147
-
148
- self.num_key_value_heads = num_key_value_heads
149
- self.hidden_act = hidden_act
150
- self.initializer_range = initializer_range
151
- self.rms_norm_eps = rms_norm_eps
152
- self.use_cache = use_cache
153
- self.rope_theta = rope_theta
154
- self.attention_dropout = attention_dropout
155
- self.max_thoughts = max_thoughts
156
- self.merged_talk_heads = merged_talk_heads
157
- self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
158
- self.merged_lm_and_think_heads = merged_lm_and_think_heads
159
- self.use_concat_talk_head = use_concat_talk_head
160
- self.use_shallow_think = use_shallow_think
161
- self.use_shallow_talk = use_shallow_talk
162
- self.use_complex_think_head = use_complex_think_head
163
- self.use_complex_talk_head = use_complex_talk_head
164
- self.use_weighted_talk_head = use_weighted_talk_head
165
-
166
- super().__init__(
167
- pad_token_id=pad_token_id,
168
- bos_token_id=bos_token_id,
169
- eos_token_id=eos_token_id,
170
- tie_word_embeddings=tie_word_embeddings,
171
- **kwargs,
172
- )