| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" Gemmoe model configuration""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						GEMMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { | 
					
					
						
						| 
							 | 
						    "Crystalcareai/GemMoE-Beta-1": "https://huggingface.co/Crystalcareai/GemMoE-Beta-1/resolve/main/config.json", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GemmoeConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`GemmoeModel`]. It is used to instantiate a Gemmoe | 
					
					
						
						| 
							 | 
						    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | 
					
					
						
						| 
							 | 
						    defaults will yield a similar configuration to that of the Gemmoe-7B. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    e.g. [mhenrichsen/gemmoe-7b](https://huggingface.co/mhenrichsen/gemmoe-7b) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
					
						
						| 
							 | 
						    documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 256000): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the Gemmoe model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`GemmoeModel`] | 
					
					
						
						| 
							 | 
						        hidden_size (`int`, *optional*, defaults to 3072): | 
					
					
						
						| 
							 | 
						            Dimension of the hidden representations. | 
					
					
						
						| 
							 | 
						        intermediate_size (`int`, *optional*, defaults to 24576): | 
					
					
						
						| 
							 | 
						            Dimension of the MLP representations. | 
					
					
						
						| 
							 | 
						        num_hidden_layers (`int`, *optional*, defaults to 28): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer decoder. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`, *optional*, defaults to 16): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer decoder. | 
					
					
						
						| 
							 | 
						        num_key_value_heads (`int`, *optional*, defaults to 16): | 
					
					
						
						| 
							 | 
						            This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
					
						
						| 
							 | 
						            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
					
						
						| 
							 | 
						            by meanpooling all the original heads within that group. For more details checkout [this | 
					
					
						
						| 
							 | 
						            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to  | 
					
					
						
						| 
							 | 
						            `num_attention_heads`. | 
					
					
						
						| 
							 | 
						        head_dim (`int`, *optional*, defaults to 256): | 
					
					
						
						| 
							 | 
						            The attention head dimension. | 
					
					
						
						| 
							 | 
						        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | 
					
					
						
						| 
							 | 
						            The non-linear activation function (function or string) in the decoder.   | 
					
					
						
						| 
							 | 
						        max_position_embeddings (`int`, *optional*, defaults to 8192): | 
					
					
						
						| 
							 | 
						            The maximum sequence length that this model might ever be used with. | 
					
					
						
						| 
							 | 
						        initializer_range (`float`, *optional*, defaults to 0.02): | 
					
					
						
						| 
							 | 
						            The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
					
						
						| 
							 | 
						        rms_norm_eps (`float`, *optional*, defaults to 1e-6):   | 
					
					
						
						| 
							 | 
						            The epsilon used by the rms normalization layers. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
					
						
						| 
							 | 
						            relevant if `config.is_decoder=True`. | 
					
					
						
						| 
							 | 
						        pad_token_id (`int`, *optional*, defaults to 0): | 
					
					
						
						| 
							 | 
						            Padding token id. | 
					
					
						
						| 
							 | 
						        eos_token_id (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            End of stream token id.   | 
					
					
						
						| 
							 | 
						        bos_token_id (`int`, *optional*, defaults to 2): | 
					
					
						
						| 
							 | 
						            Beginning of stream token id. | 
					
					
						
						| 
							 | 
						        tie_word_embeddings (`bool`, *optional*, defaults to `True`):  | 
					
					
						
						| 
							 | 
						            Whether to tie weight embeddings | 
					
					
						
						| 
							 | 
						        rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
					
						
						| 
							 | 
						            The base period of the RoPE embeddings. | 
					
					
						
						| 
							 | 
						        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether to use a bias in the query, key, value and output projection layers during self-attention. | 
					
					
						
						| 
							 | 
						        attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the attention probabilities. | 
					
					
						
						| 
							 | 
						        num_experts_per_tok (`int`, *optional*, defaults to 2): | 
					
					
						
						| 
							 | 
						            The number of experts used in the sparse mixture of experts layer. | 
					
					
						
						| 
							 | 
						        num_local_experts (`int`, *optional*, defaults to 8):   | 
					
					
						
						| 
							 | 
						            The number of local experts used in the sparse mixture of experts layer. | 
					
					
						
						| 
							 | 
						        router_aux_loss_coef (`float`, *optional*, defaults to 0.01): | 
					
					
						
						| 
							 | 
						            The coefficient for the auxiliary loss of the router. | 
					
					
						
						| 
							 | 
						        output_router_logits (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether or not to output the logits of the routers. They are useful for computing the router loss, and | 
					
					
						
						| 
							 | 
						            should not be returned during inference. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    ```python | 
					
					
						
						| 
							 | 
						    >>> from transformers import GemmoeModel, GemmoeConfig | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a Gemmoe gemmoe-7b style configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = GemmoeConfig() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a model from the gemmoe-7b style configuration | 
					
					
						
						| 
							 | 
						    >>> model = GemmoeModel(configuration) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Accessing the model configuration  | 
					
					
						
						| 
							 | 
						    >>> configuration = model.config | 
					
					
						
						| 
							 | 
						    ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_type = "gemmoe" | 
					
					
						
						| 
							 | 
						    keys_to_ignore_at_inference = ["past_key_values"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=256000, | 
					
					
						
						| 
							 | 
						        hidden_size=3072, | 
					
					
						
						| 
							 | 
						        intermediate_size=24576, | 
					
					
						
						| 
							 | 
						        num_hidden_layers=28, | 
					
					
						
						| 
							 | 
						        num_attention_heads=16, | 
					
					
						
						| 
							 | 
						        num_key_value_heads=16, | 
					
					
						
						| 
							 | 
						        head_dim=256, | 
					
					
						
						| 
							 | 
						        hidden_act="gelu", | 
					
					
						
						| 
							 | 
						        max_position_embeddings=8192, | 
					
					
						
						| 
							 | 
						        initializer_range=0.02, | 
					
					
						
						| 
							 | 
						        rms_norm_eps=1e-6, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        pad_token_id=0, | 
					
					
						
						| 
							 | 
						        eos_token_id=1, | 
					
					
						
						| 
							 | 
						        bos_token_id=2, | 
					
					
						
						| 
							 | 
						        tie_word_embeddings=True, | 
					
					
						
						| 
							 | 
						        rope_theta=10000.0, | 
					
					
						
						| 
							 | 
						        attention_bias=False, | 
					
					
						
						| 
							 | 
						        attention_dropout=0.0, | 
					
					
						
						| 
							 | 
						        num_experts_per_tok=2, | 
					
					
						
						| 
							 | 
						        num_local_experts=8, | 
					
					
						
						| 
							 | 
						        router_aux_loss_coef=0.02, | 
					
					
						
						| 
							 | 
						        output_router_logits=False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings         | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        self.num_hidden_layers = num_hidden_layers | 
					
					
						
						| 
							 | 
						        self.num_attention_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						        self.head_dim = head_dim | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.hidden_act = hidden_act | 
					
					
						
						| 
							 | 
						        self.initializer_range = initializer_range | 
					
					
						
						| 
							 | 
						        self.rms_norm_eps = rms_norm_eps | 
					
					
						
						| 
							 | 
						        self.use_cache = use_cache | 
					
					
						
						| 
							 | 
						        self.rope_theta = rope_theta | 
					
					
						
						| 
							 | 
						        self.attention_bias = attention_bias  | 
					
					
						
						| 
							 | 
						        self.attention_dropout = attention_dropout | 
					
					
						
						| 
							 | 
						        self.num_experts_per_tok = num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.num_local_experts = num_local_experts | 
					
					
						
						| 
							 | 
						        self.router_aux_loss_coef = router_aux_loss_coef | 
					
					
						
						| 
							 | 
						        self.output_router_logits = output_router_logits | 
					
					
						
						| 
							 | 
						          | 
					
					
						
						| 
							 | 
						        super().__init__( | 
					
					
						
						| 
							 | 
						            pad_token_id=pad_token_id, | 
					
					
						
						| 
							 | 
						            bos_token_id=bos_token_id, | 
					
					
						
						| 
							 | 
						            eos_token_id=eos_token_id, | 
					
					
						
						| 
							 | 
						            tie_word_embeddings=tie_word_embeddings, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) |