File size: 5,659 Bytes
c165cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import sys
sys.path.append("..")

import numpy as np

from pycolmap import DualQuaternion, Image, SceneManager


#-------------------------------------------------------------------------------

image_to_idx = lambda im: int(im.name[:im.name.rfind(".")])


#-------------------------------------------------------------------------------

def interpolate_linear(images, camera_id, file_format):
    if len(images) < 2:
        raise ValueError("Need at least two images for linear interpolation!")

    prev_image = images[0]
    prev_idx = image_to_idx(prev_image)
    prev_dq = DualQuaternion.FromQT(prev_image.q, prev_image.t)
    start = prev_idx

    new_images = []

    for image in images[1:]:
        curr_idx = image_to_idx(image)
        curr_dq = DualQuaternion.FromQT(image.q, image.t)
        T = curr_idx - prev_idx
        Tinv = 1. / T

        # like quaternions, dq(x) = -dq(x), so we'll need to pick the one more
        # appropriate for interpolation by taking -dq if the dot product of the
        # two q-vectors is negative
        if prev_dq.q0.dot(curr_dq.q0) < 0:
            curr_dq = -curr_dq

        for i in xrange(1, T):
            t = i * Tinv
            dq = t * prev_dq + (1. - t) * curr_dq
            q, t = dq.ToQT()
            new_images.append(
                Image(file_format.format(prev_idx + i), args.camera_id, q, t))

        prev_idx = curr_idx
        prev_dq = curr_dq

    return new_images


#-------------------------------------------------------------------------------

def interpolate_hermite(images, camera_id, file_format):
    if len(images) < 4:
        raise ValueError(
            "Need at least four images for Hermite spline interpolation!")

    new_images = []

    # linear blending for the first frames
    T0 = image_to_idx(images[0])
    dq0 = DualQuaternion.FromQT(images[0].q, images[0].t)
    T1 = image_to_idx(images[1])
    dq1 = DualQuaternion.FromQT(images[1].q, images[1].t)

    if dq0.q0.dot(dq1.q0) < 0:
        dq1 = -dq1
    dT = 1. / float(T1 - T0)
    for j in xrange(1, T1 - T0):
        t = j * dT
        dq = ((1. - t) * dq0 + t * dq1).normalize()
        new_images.append(
            Image(file_format.format(T0 + j), camera_id, *dq.ToQT()))

    T2 = image_to_idx(images[2])
    dq2 = DualQuaternion.FromQT(images[2].q, images[2].t)
    if dq1.q0.dot(dq2.q0) < 0:
        dq2 = -dq2

    # Hermite spline interpolation of dual quaternions
    # pdfs.semanticscholar.org/05b1/8ede7f46c29c2722fed3376d277a1d286c55.pdf
    for i in xrange(1, len(images) - 2):
        T3 = image_to_idx(images[i + 2])
        dq3 = DualQuaternion.FromQT(images[i + 2].q, images[i + 2].t)
        if dq2.q0.dot(dq3.q0) < 0:
            dq3 = -dq3

        prev_duration = T1 - T0
        current_duration = T2 - T1
        next_duration = T3 - T2

        # approximate the derivatives at dq1 and dq2 using weighted central
        # differences
        dt1 = 1. / float(T2 - T0)
        dt2 = 1. / float(T3 - T1)

        m1 = (current_duration * dt1) * (dq2 - dq1) + \
             (prev_duration * dt1) * (dq1 - dq0) 
        m2 = (next_duration * dt2) * (dq3 - dq2) + \
             (current_duration * dt2) * (dq2 - dq1) 

        dT = 1. / float(current_duration)

        for j in xrange(1, current_duration):
            t = j * dT # 0 to 1
            t2 = t * t # t squared
            t3 = t2 * t # t cubed

            # coefficients of the Hermite spline (a=>dq and b=>m)
            a1 = 2. * t3 - 3. * t2 + 1.
            b1 = t3 - 2. * t2 + t
            a2 = -2. * t3 + 3. * t2
            b2 = t3 - t2

            dq = (a1 * dq1 + b1 * m1 + a2 * dq2 + b2 * m2).normalize()

            new_images.append(
                Image(file_format.format(T1 + j), camera_id, *dq.ToQT()))

        T0, T1, T2 = T1, T2, T3
        dq0, dq1, dq2 = dq1, dq2, dq3

    # linear blending for the last frames
    dT = 1. / float(T2 - T1)
    for j in xrange(1, T2 - T1):
        t = j * dT # 0 to 1
        dq = ((1. - t) * dq1 + t * dq2).normalize()
        new_images.append(
            Image(file_format.format(T1 + j), camera_id, *dq.ToQT()))
    
    return new_images


#-------------------------------------------------------------------------------

def main(args):
    scene_manager = SceneManager(args.input_folder)
    scene_manager.load()

    images = sorted(scene_manager.images.itervalues(), key=image_to_idx)

    if args.method.lower() == "linear":
        new_images = interpolate_linear(images, args.camera_id, args.format)
    else:
        new_images = interpolate_hermite(images, args.camera_id, args.format)

    map(scene_manager.add_image, new_images)

    scene_manager.save(args.output_folder)


#-------------------------------------------------------------------------------

if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(
        description="Given a reconstruction with ordered images *with integer "
        "filenames* like '000100.png', fill in missing camera positions for "
        "intermediate frames.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument("input_folder")
    parser.add_argument("output_folder")

    parser.add_argument("--camera_id", type=int, default=1,
        help="camera id to use for the missing images")

    parser.add_argument("--format", type=str, default="{:06d}.png",
        help="filename format to use for added images")

    parser.add_argument(
        "--method", type=str.lower, choices=("linear", "hermite"),
        default="hermite",
        help="Pose imputation method")

    args = parser.parse_args()

    main(args)