File size: 43,877 Bytes
c165cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
import abc
import copy
import json
import os
import cv2
from internal import camera_utils
from internal import configs
from internal import image as lib_image
from internal import raw_utils
from internal import utils
from collections import defaultdict
import numpy as np
import cv2
from PIL import Image
import torch
from tqdm import tqdm
# This is ugly, but it works.
import sys

sys.path.insert(0, 'internal/pycolmap')
sys.path.insert(0, 'internal/pycolmap/pycolmap')
import pycolmap


def load_dataset(split, train_dir, config: configs.Config):
    """Loads a split of a dataset using the data_loader specified by `config`."""
    if config.multiscale:
        dataset_dict = {
            'llff': MultiLLFF,
        }
    else:
        dataset_dict = {
            'blender': Blender,
            'llff': LLFF,
            'tat_nerfpp': TanksAndTemplesNerfPP,
            'tat_fvs': TanksAndTemplesFVS,
            'dtu': DTU,
        }
    return dataset_dict[config.dataset_loader](split, train_dir, config)


class NeRFSceneManager(pycolmap.SceneManager):
    """COLMAP pose loader.

  Minor NeRF-specific extension to the third_party Python COLMAP loader:
  google3/third_party/py/pycolmap/scene_manager.py
  """

    def process(self):
        """Applies NeRF-specific postprocessing to the loaded pose data.

    Returns:
      a tuple [image_names, poses, pixtocam, distortion_params].
      image_names:  contains the only the basename of the images.
      poses: [N, 4, 4] array containing the camera to world matrices.
      pixtocam: [N, 3, 3] array containing the camera to pixel space matrices.
      distortion_params: mapping of distortion param name to distortion
        parameters. Cameras share intrinsics. Valid keys are k1, k2, p1 and p2.
    """

        self.load_cameras()
        self.load_images()
        # self.load_points3D()  # For now, we do not need the point cloud data.

        # Assume shared intrinsics between all cameras.
        cam = self.cameras[1]

        # Extract focal lengths and principal point parameters.
        fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy
        pixtocam = np.linalg.inv(camera_utils.intrinsic_matrix(fx, fy, cx, cy))

        # Extract extrinsic matrices in world-to-camera format.
        imdata = self.images
        w2c_mats = []
        bottom = np.array([0, 0, 0, 1]).reshape(1, 4)
        for k in imdata:
            im = imdata[k]
            rot = im.R()
            trans = im.tvec.reshape(3, 1)
            w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0)
            w2c_mats.append(w2c)
        w2c_mats = np.stack(w2c_mats, axis=0)

        # Convert extrinsics to camera-to-world.
        c2w_mats = np.linalg.inv(w2c_mats)
        poses = c2w_mats[:, :3, :4]

        # Image names from COLMAP. No need for permuting the poses according to
        # image names anymore.
        names = [imdata[k].name for k in imdata]

        # Switch from COLMAP (right, down, fwd) to NeRF (right, up, back) frame.
        poses = poses @ np.diag([1, -1, -1, 1])

        # Get distortion parameters.
        type_ = cam.camera_type

        if type_ == 0 or type_ == 'SIMPLE_PINHOLE':
            params = None
            camtype = camera_utils.ProjectionType.PERSPECTIVE

        elif type_ == 1 or type_ == 'PINHOLE':
            params = None
            camtype = camera_utils.ProjectionType.PERSPECTIVE

        if type_ == 2 or type_ == 'SIMPLE_RADIAL':
            params = {k: 0. for k in ['k1', 'k2', 'k3', 'p1', 'p2']}
            params['k1'] = cam.k1
            camtype = camera_utils.ProjectionType.PERSPECTIVE

        elif type_ == 3 or type_ == 'RADIAL':
            params = {k: 0. for k in ['k1', 'k2', 'k3', 'p1', 'p2']}
            params['k1'] = cam.k1
            params['k2'] = cam.k2
            camtype = camera_utils.ProjectionType.PERSPECTIVE

        elif type_ == 4 or type_ == 'OPENCV':
            params = {k: 0. for k in ['k1', 'k2', 'k3', 'p1', 'p2']}
            params['k1'] = cam.k1
            params['k2'] = cam.k2
            params['p1'] = cam.p1
            params['p2'] = cam.p2
            camtype = camera_utils.ProjectionType.PERSPECTIVE

        elif type_ == 5 or type_ == 'OPENCV_FISHEYE':
            params = {k: 0. for k in ['k1', 'k2', 'k3', 'k4']}
            params['k1'] = cam.k1
            params['k2'] = cam.k2
            params['k3'] = cam.k3
            params['k4'] = cam.k4
            camtype = camera_utils.ProjectionType.FISHEYE

        return names, poses, pixtocam, params, camtype


def load_blender_posedata(data_dir, split=None):
    """Load poses from `transforms.json` file, as used in Blender/NGP datasets."""
    suffix = '' if split is None else f'_{split}'
    pose_file = os.path.join(data_dir, f'transforms{suffix}.json')
    with utils.open_file(pose_file, 'r') as fp:
        meta = json.load(fp)
    names = []
    poses = []
    for _, frame in enumerate(meta['frames']):
        filepath = os.path.join(data_dir, frame['file_path'])
        if utils.file_exists(filepath):
            names.append(frame['file_path'].split('/')[-1])
            poses.append(np.array(frame['transform_matrix'], dtype=np.float32))
    poses = np.stack(poses, axis=0)

    w = meta['w']
    h = meta['h']
    cx = meta['cx'] if 'cx' in meta else w / 2.
    cy = meta['cy'] if 'cy' in meta else h / 2.
    if 'fl_x' in meta:
        fx = meta['fl_x']
    else:
        fx = 0.5 * w / np.tan(0.5 * float(meta['camera_angle_x']))
    if 'fl_y' in meta:
        fy = meta['fl_y']
    else:
        fy = 0.5 * h / np.tan(0.5 * float(meta['camera_angle_y']))
    pixtocam = np.linalg.inv(camera_utils.intrinsic_matrix(fx, fy, cx, cy))
    coeffs = ['k1', 'k2', 'p1', 'p2']
    if not any([c in meta for c in coeffs]):
        params = None
    else:
        params = {c: (meta[c] if c in meta else 0.) for c in coeffs}
    camtype = camera_utils.ProjectionType.PERSPECTIVE
    return names, poses, pixtocam, params, camtype


class Dataset(torch.utils.data.Dataset):
    """Dataset Base Class.

  Base class for a NeRF dataset. Creates batches of ray and color data used for
  training or rendering a NeRF model.

  Each subclass is responsible for loading images and camera poses from disk by
  implementing the _load_renderings() method. This data is used to generate
  train and test batches of ray + color data for feeding through the NeRF model.
  The ray parameters are calculated in _generate_rays().

  The public interface mimics the behavior of a standard machine learning
  pipeline dataset provider that can provide infinite batches of data to the
  training/testing pipelines without exposing any details of how the batches are
  loaded/created or how this is parallelized. Therefore, the initializer runs
  all setup, including data loading from disk using _load_renderings(), and
  begins the thread using its parent start() method. After the initializer
  returns, the caller can request batches of data straight away.

  The internal self._queue is initialized as queue.Queue(3), so the infinite
  loop in run() will block on the call self._queue.put(self._next_fn()) once
  there are 3 elements. The main thread training job runs in a loop that pops 1
  element at a time off the front of the queue. The Dataset thread's run() loop
  will populate the queue with 3 elements, then wait until a batch has been
  removed and push one more onto the end.

  This repeats indefinitely until the main thread's training loop completes
  (typically hundreds of thousands of iterations), then the main thread will
  exit and the Dataset thread will automatically be killed since it is a daemon.

  Attributes:
    alphas: np.ndarray, optional array of alpha channel data.
    cameras: tuple summarizing all camera extrinsic/intrinsic/distortion params.
    camtoworlds: np.ndarray, a list of extrinsic camera pose matrices.
    camtype: camera_utils.ProjectionType, fisheye or perspective camera.
    data_dir: str, location of the dataset on disk.
    disp_images: np.ndarray, optional array of disparity (inverse depth) data.
    distortion_params: dict, the camera distortion model parameters.
    exposures: optional per-image exposure value (shutter * ISO / 1000).
    far: float, far plane value for rays.
    focal: float, focal length from camera intrinsics.
    height: int, height of images.
    images: np.ndarray, array of RGB image data.
    metadata: dict, optional metadata for raw datasets.
    near: float, near plane value for rays.
    normal_images: np.ndarray, optional array of surface normal vector data.
    pixtocams: np.ndarray, one or a list of inverse intrinsic camera matrices.
    pixtocam_ndc: np.ndarray, the inverse intrinsic matrix used for NDC space.
    poses: np.ndarray, optional array of auxiliary camera pose data.
    rays: utils.Rays, ray data for every pixel in the dataset.
    render_exposures: optional list of exposure values for the render path.
    render_path: bool, indicates if a smooth camera path should be generated.
    size: int, number of images in the dataset.
    split: str, indicates if this is a "train" or "test" dataset.
    width: int, width of images.
  """

    def __init__(self,
                 split: str,
                 data_dir: str,
                 config: configs.Config):
        super().__init__()

        # Initialize attributes
        self._patch_size = max(config.patch_size, 1)
        self._batch_size = config.batch_size // config.world_size
        if self._patch_size ** 2 > self._batch_size:
            raise ValueError(f'Patch size {self._patch_size}^2 too large for ' +
                             f'per-process batch size {self._batch_size}')
        self._batching = utils.BatchingMethod(config.batching)
        self._use_tiffs = config.use_tiffs
        self._load_disps = config.compute_disp_metrics
        self._load_normals = config.compute_normal_metrics
        self._num_border_pixels_to_mask = config.num_border_pixels_to_mask
        self._apply_bayer_mask = config.apply_bayer_mask
        self._render_spherical = False

        self.config = config
        self.global_rank = config.global_rank
        self.world_size = config.world_size
        self.split = utils.DataSplit(split)
        self.data_dir = data_dir
        self.near = config.near
        self.far = config.far
        self.render_path = config.render_path
        self.distortion_params = None
        self.disp_images = None
        self.normal_images = None
        self.alphas = None
        self.poses = None
        self.pixtocam_ndc = None
        self.metadata = None
        self.camtype = camera_utils.ProjectionType.PERSPECTIVE
        self.exposures = None
        self.render_exposures = None

        # Providing type comments for these attributes, they must be correctly
        # initialized by _load_renderings() (see docstring) in any subclass.
        self.images: np.ndarray = None
        self.camtoworlds: np.ndarray = None
        self.pixtocams: np.ndarray = None
        self.height: int = None
        self.width: int = None

        # Load data from disk using provided config parameters.
        self._load_renderings(config)

        if self.render_path:
            if config.render_path_file is not None:
                with utils.open_file(config.render_path_file, 'rb') as fp:
                    render_poses = np.load(fp)
                self.camtoworlds = render_poses
            if config.render_resolution is not None:
                self.width, self.height = config.render_resolution
            if config.render_focal is not None:
                self.focal = config.render_focal
            if config.render_camtype is not None:
                if config.render_camtype == 'pano':
                    self._render_spherical = True
                else:
                    self.camtype = camera_utils.ProjectionType(config.render_camtype)

            self.distortion_params = None
            self.pixtocams = camera_utils.get_pixtocam(self.focal, self.width,
                                                       self.height)

        self._n_examples = self.camtoworlds.shape[0]

        self.cameras = (self.pixtocams,
                        self.camtoworlds,
                        self.distortion_params,
                        self.pixtocam_ndc)

        # Seed the queue with one batch to avoid race condition.
        if self.split == utils.DataSplit.TRAIN and not config.compute_visibility:
            self._next_fn = self._next_train
        else:
            self._next_fn = self._next_test

    @property
    def size(self):
        return self._n_examples

    def __len__(self):
        if self.split == utils.DataSplit.TRAIN and not self.config.compute_visibility:
            return 1000
        else:
            return self._n_examples

    @abc.abstractmethod
    def _load_renderings(self, config):
        """Load images and poses from disk.

    Args:
      config: utils.Config, user-specified config parameters.
    In inherited classes, this method must set the following public attributes:
      images: [N, height, width, 3] array for RGB images.
      disp_images: [N, height, width] array for depth data (optional).
      normal_images: [N, height, width, 3] array for normals (optional).
      camtoworlds: [N, 3, 4] array of extrinsic pose matrices.
      poses: [..., 3, 4] array of auxiliary pose data (optional).
      pixtocams: [N, 3, 4] array of inverse intrinsic matrices.
      distortion_params: dict, camera lens distortion model parameters.
      height: int, height of images.
      width: int, width of images.
      focal: float, focal length to use for ideal pinhole rendering.
    """

    def _make_ray_batch(self,
                        pix_x_int,
                        pix_y_int,
                        cam_idx,
                        lossmult=None
                        ):
        """Creates ray data batch from pixel coordinates and camera indices.

    All arguments must have broadcastable shapes. If the arguments together
    broadcast to a shape [a, b, c, ..., z] then the returned utils.Rays object
    will have array attributes with shape [a, b, c, ..., z, N], where N=3 for
    3D vectors and N=1 for per-ray scalar attributes.

    Args:
      pix_x_int: int array, x coordinates of image pixels.
      pix_y_int: int array, y coordinates of image pixels.
      cam_idx: int or int array, camera indices.
      lossmult: float array, weight to apply to each ray when computing loss fn.

    Returns:
      A dict mapping from strings utils.Rays or arrays of image data.
      This is the batch provided for one NeRF train or test iteration.
    """

        broadcast_scalar = lambda x: np.broadcast_to(x, pix_x_int.shape)[..., None]
        ray_kwargs = {
            'lossmult': broadcast_scalar(1.) if lossmult is None else lossmult,
            'near': broadcast_scalar(self.near),
            'far': broadcast_scalar(self.far),
            'cam_idx': broadcast_scalar(cam_idx),
        }
        # Collect per-camera information needed for each ray.
        if self.metadata is not None:
            # Exposure index and relative shutter speed, needed for RawNeRF.
            for key in ['exposure_idx', 'exposure_values']:
                idx = 0 if self.render_path else cam_idx
                ray_kwargs[key] = broadcast_scalar(self.metadata[key][idx])
        if self.exposures is not None:
            idx = 0 if self.render_path else cam_idx
            ray_kwargs['exposure_values'] = broadcast_scalar(self.exposures[idx])
        if self.render_path and self.render_exposures is not None:
            ray_kwargs['exposure_values'] = broadcast_scalar(
                self.render_exposures[cam_idx])

        pixels = dict(pix_x_int=pix_x_int, pix_y_int=pix_y_int, **ray_kwargs)

        # Slow path, do ray computation using numpy (on CPU).
        batch = camera_utils.cast_ray_batch(self.cameras, pixels, self.camtype)
        batch['cam_dirs'] = -self.camtoworlds[ray_kwargs['cam_idx'][..., 0]][..., :3, 2]

        # import trimesh
        # pts = batch['origins'][..., None, :] + batch['directions'][..., None, :] * np.linspace(0, 1, 5)[:, None]
        # trimesh.Trimesh(vertices=pts.reshape(-1, 3)).export("test.ply", "ply")
        #
        # pts = batch['origins'][0, 0, None, :] - self.camtoworlds[cam_idx][:, 2] * np.linspace(0, 1, 100)[:, None]
        # trimesh.Trimesh(vertices=pts.reshape(-1, 3)).export("test2.ply", "ply")

        if not self.render_path:
            batch['rgb'] = self.images[cam_idx, pix_y_int, pix_x_int]
        if self._load_disps:
            batch['disps'] = self.disp_images[cam_idx, pix_y_int, pix_x_int]
        if self._load_normals:
            batch['normals'] = self.normal_images[cam_idx, pix_y_int, pix_x_int]
            batch['alphas'] = self.alphas[cam_idx, pix_y_int, pix_x_int]
        return {k: torch.from_numpy(v.copy()).float() if v is not None else None for k, v in batch.items()}

    def _next_train(self, item):
        """Sample next training batch (random rays)."""
        # We assume all images in the dataset are the same resolution, so we can use
        # the same width/height for sampling all pixels coordinates in the batch.
        # Batch/patch sampling parameters.
        num_patches = self._batch_size // self._patch_size ** 2
        lower_border = self._num_border_pixels_to_mask
        upper_border = self._num_border_pixels_to_mask + self._patch_size - 1
        # Random pixel patch x-coordinates.
        pix_x_int = np.random.randint(lower_border, self.width - upper_border,
                                      (num_patches, 1, 1))
        # Random pixel patch y-coordinates.
        pix_y_int = np.random.randint(lower_border, self.height - upper_border,
                                      (num_patches, 1, 1))
        # Add patch coordinate offsets.
        # Shape will broadcast to (num_patches, _patch_size, _patch_size).
        patch_dx_int, patch_dy_int = camera_utils.pixel_coordinates(
            self._patch_size, self._patch_size)
        pix_x_int = pix_x_int + patch_dx_int
        pix_y_int = pix_y_int + patch_dy_int
        # Random camera indices.
        if self._batching == utils.BatchingMethod.ALL_IMAGES:
            cam_idx = np.random.randint(0, self._n_examples, (num_patches, 1, 1))
        else:
            cam_idx = np.random.randint(0, self._n_examples, (1,))

        if self._apply_bayer_mask:
            # Compute the Bayer mosaic mask for each pixel in the batch.
            lossmult = raw_utils.pixels_to_bayer_mask(pix_x_int, pix_y_int)
        else:
            lossmult = None

        return self._make_ray_batch(pix_x_int, pix_y_int, cam_idx,
                                    lossmult=lossmult)

    def generate_ray_batch(self, cam_idx: int):
        """Generate ray batch for a specified camera in the dataset."""
        if self._render_spherical:
            camtoworld = self.camtoworlds[cam_idx]
            rays = camera_utils.cast_spherical_rays(
                camtoworld, self.height, self.width, self.near, self.far)
            return rays
        else:
            # Generate rays for all pixels in the image.
            pix_x_int, pix_y_int = camera_utils.pixel_coordinates(
                self.width, self.height)
            return self._make_ray_batch(pix_x_int, pix_y_int, cam_idx)

    def _next_test(self, item):
        """Sample next test batch (one full image)."""
        return self.generate_ray_batch(item)

    def collate_fn(self, item):
        return self._next_fn(item[0])

    def __getitem__(self, item):
        return self._next_fn(item)


class Blender(Dataset):
    """Blender Dataset."""

    def _load_renderings(self, config):
        """Load images from disk."""
        if config.render_path:
            raise ValueError('render_path cannot be used for the blender dataset.')
        pose_file = os.path.join(self.data_dir, f'transforms_{self.split.value}.json')
        with utils.open_file(pose_file, 'r') as fp:
            meta = json.load(fp)
        images = []
        disp_images = []
        normal_images = []
        cams = []
        for idx, frame in enumerate(tqdm(meta['frames'], desc='Loading Blender dataset', disable=self.global_rank != 0, leave=False)):
            fprefix = os.path.join(self.data_dir, frame['file_path'])

            def get_img(f, fprefix=fprefix):
                image = utils.load_img(fprefix + f)
                if config.factor > 1:
                    image = lib_image.downsample(image, config.factor)
                return image

            if self._use_tiffs:
                channels = [get_img(f'_{ch}.tiff') for ch in ['R', 'G', 'B', 'A']]
                # Convert image to sRGB color space.
                image = lib_image.linear_to_srgb_np(np.stack(channels, axis=-1))
            else:
                image = get_img('.png') / 255.
            images.append(image)

            if self._load_disps:
                disp_image = get_img('_disp.tiff')
                disp_images.append(disp_image)
            if self._load_normals:
                normal_image = get_img('_normal.png')[..., :3] * 2. / 255. - 1.
                normal_images.append(normal_image)

            cams.append(np.array(frame['transform_matrix'], dtype=np.float32))

        self.images = np.stack(images, axis=0)
        if self._load_disps:
            self.disp_images = np.stack(disp_images, axis=0)
        if self._load_normals:
            self.normal_images = np.stack(normal_images, axis=0)
            self.alphas = self.images[..., -1]

        rgb, alpha = self.images[..., :3], self.images[..., -1:]
        self.images = rgb * alpha + (1. - alpha)  # Use a white background.
        self.height, self.width = self.images.shape[1:3]
        self.camtoworlds = np.stack(cams, axis=0)
        self.focal = .5 * self.width / np.tan(.5 * float(meta['camera_angle_x']))
        self.pixtocams = camera_utils.get_pixtocam(self.focal, self.width,
                                                   self.height)


class LLFF(Dataset):
    """LLFF Dataset."""

    def _load_renderings(self, config):
        """Load images from disk."""
        # Set up scaling factor.
        image_dir_suffix = ''
        # Use downsampling factor (unless loading training split for raw dataset,
        # we train raw at full resolution because of the Bayer mosaic pattern).
        if config.factor > 0 and not (config.rawnerf_mode and
                                      self.split == utils.DataSplit.TRAIN):
            image_dir_suffix = f'_{config.factor}'
            factor = config.factor
        else:
            factor = 1

        # Copy COLMAP data to local disk for faster loading.
        colmap_dir = os.path.join(self.data_dir, 'sparse/0/')

        # Load poses.
        if utils.file_exists(colmap_dir):
            pose_data = NeRFSceneManager(colmap_dir).process()
        else:
            # # Attempt to load Blender/NGP format if COLMAP data not present.
            # pose_data = load_blender_posedata(self.data_dir)
            raise ValueError('COLMAP data not found.')
        image_names, poses, pixtocam, distortion_params, camtype = pose_data

        # Previous NeRF results were generated with images sorted by filename,
        # use this flag to ensure metrics are reported on the same test set.
        inds = np.argsort(image_names)
        image_names = [image_names[i] for i in inds]
        poses = poses[inds]

        # Load bounds if possible (only used in forward facing scenes).
        posefile = os.path.join(self.data_dir, 'poses_bounds.npy')
        if utils.file_exists(posefile):
            with utils.open_file(posefile, 'rb') as fp:
                poses_arr = np.load(fp)
            bounds = poses_arr[:, -2:]
        else:
            bounds = np.array([0.01, 1.])
        self.colmap_to_world_transform = np.eye(4)

        # Scale the inverse intrinsics matrix by the image downsampling factor.
        pixtocam = pixtocam @ np.diag([factor, factor, 1.])
        self.pixtocams = pixtocam.astype(np.float32)
        self.focal = 1. / self.pixtocams[0, 0]
        self.distortion_params = distortion_params
        self.camtype = camtype

        # Separate out 360 versus forward facing scenes.
        if config.forward_facing:
            # Set the projective matrix defining the NDC transformation.
            self.pixtocam_ndc = self.pixtocams.reshape(-1, 3, 3)[0]
            # Rescale according to a default bd factor.
            scale = 1. / (bounds.min() * .75)
            poses[:, :3, 3] *= scale
            self.colmap_to_world_transform = np.diag([scale] * 3 + [1])
            bounds *= scale
            # Recenter poses.
            poses, transform = camera_utils.recenter_poses(poses)
            self.colmap_to_world_transform = (
                    transform @ self.colmap_to_world_transform)
            # Forward-facing spiral render path.
            self.render_poses = camera_utils.generate_spiral_path(
                poses, bounds, n_frames=config.render_path_frames)
        else:
            # Rotate/scale poses to align ground with xy plane and fit to unit cube.
            poses, transform = camera_utils.transform_poses_pca(poses)
            self.colmap_to_world_transform = transform
            if config.render_spline_keyframes is not None:
                rets = camera_utils.create_render_spline_path(config, image_names,
                                                              poses, self.exposures)
                self.spline_indices, self.render_poses, self.render_exposures = rets
            else:
                # Automatically generated inward-facing elliptical render path.
                self.render_poses = camera_utils.generate_ellipse_path(
                    poses,
                    n_frames=config.render_path_frames,
                    z_variation=config.z_variation,
                    z_phase=config.z_phase)

        # Select the split.
        all_indices = np.arange(len(image_names))
        if config.llff_use_all_images_for_training:
            train_indices = all_indices
        else:
            train_indices = all_indices % config.llffhold != 0
        if config.llff_use_all_images_for_testing:
            test_indices = all_indices
        else:
            test_indices = all_indices % config.llffhold == 0
        split_indices = {
            utils.DataSplit.TEST: all_indices[test_indices],
            utils.DataSplit.TRAIN: all_indices[train_indices],
        }
        indices = split_indices[self.split]
        image_names = [image_names[i] for i in indices]
        poses = poses[indices]
        # if self.split == utils.DataSplit.TRAIN:
        #     # load different training data on different rank
        #     local_indices = [i for i in range(len(image_names)) if (i + self.global_rank) % self.world_size == 0]
        #     image_names = [image_names[i] for i in local_indices]
        #     poses = poses[local_indices]
        #     indices = local_indices

        raw_testscene = False
        if config.rawnerf_mode:
            # Load raw images and metadata.
            images, metadata, raw_testscene = raw_utils.load_raw_dataset(
                self.split,
                self.data_dir,
                image_names,
                config.exposure_percentile,
                factor)
            self.metadata = metadata

        else:
            # Load images.
            colmap_image_dir = os.path.join(self.data_dir, 'images')
            image_dir = os.path.join(self.data_dir, 'images' + image_dir_suffix)
            for d in [image_dir, colmap_image_dir]:
                if not utils.file_exists(d):
                    raise ValueError(f'Image folder {d} does not exist.')
            # Downsampled images may have different names vs images used for COLMAP,
            # so we need to map between the two sorted lists of files.
            colmap_files = sorted(utils.listdir(colmap_image_dir))
            image_files = sorted(utils.listdir(image_dir))
            colmap_to_image = dict(zip(colmap_files, image_files))
            image_paths = [os.path.join(image_dir, colmap_to_image[f])
                           for f in image_names]
            images = [utils.load_img(x) for x in tqdm(image_paths, desc='Loading LLFF dataset', disable=self.global_rank != 0, leave=False)]
            images = np.stack(images, axis=0) / 255.

            # EXIF data is usually only present in the original JPEG images.
            jpeg_paths = [os.path.join(colmap_image_dir, f) for f in image_names]
            exifs = [utils.load_exif(x) for x in jpeg_paths]
            self.exifs = exifs
            if 'ExposureTime' in exifs[0] and 'ISOSpeedRatings' in exifs[0]:
                gather_exif_value = lambda k: np.array([float(x[k]) for x in exifs])
                shutters = gather_exif_value('ExposureTime')
                isos = gather_exif_value('ISOSpeedRatings')
                self.exposures = shutters * isos / 1000.

        if raw_testscene:
            # For raw testscene, the first image sent to COLMAP has the same pose as
            # the ground truth test image. The remaining images form the training set.
            raw_testscene_poses = {
                utils.DataSplit.TEST: poses[:1],
                utils.DataSplit.TRAIN: poses[1:],
            }
            poses = raw_testscene_poses[self.split]

        self.poses = poses
        self.images = images
        self.camtoworlds = self.render_poses if config.render_path else poses
        self.height, self.width = images.shape[1:3]


class TanksAndTemplesNerfPP(Dataset):
    """Subset of Tanks and Temples Dataset as processed by NeRF++."""

    def _load_renderings(self, config):
        """Load images from disk."""
        if config.render_path:
            split_str = 'camera_path'
        else:
            split_str = self.split.value

        basedir = os.path.join(self.data_dir, split_str)

        # TODO: need to rewrite this to put different data on different rank
        def load_files(dirname, load_fn, shape=None):
            files = [
                os.path.join(basedir, dirname, f)
                for f in sorted(utils.listdir(os.path.join(basedir, dirname)))
            ]
            mats = np.array([load_fn(utils.open_file(f, 'rb')) for f in files])
            if shape is not None:
                mats = mats.reshape(mats.shape[:1] + shape)
            return mats

        poses = load_files('pose', np.loadtxt, (4, 4))
        # Flip Y and Z axes to get correct coordinate frame.
        poses = np.matmul(poses, np.diag(np.array([1, -1, -1, 1])))

        # For now, ignore all but the first focal length in intrinsics
        intrinsics = load_files('intrinsics', np.loadtxt, (4, 4))

        if not config.render_path:
            images = load_files('rgb', lambda f: np.array(Image.open(f))) / 255.
            self.images = images
            self.height, self.width = self.images.shape[1:3]

        else:
            # Hack to grab the image resolution from a test image
            d = os.path.join(self.data_dir, 'test', 'rgb')
            f = os.path.join(d, sorted(utils.listdir(d))[0])
            shape = utils.load_img(f).shape
            self.height, self.width = shape[:2]
            self.images = None

        self.camtoworlds = poses
        self.focal = intrinsics[0, 0, 0]
        self.pixtocams = camera_utils.get_pixtocam(self.focal, self.width,
                                                   self.height)


class TanksAndTemplesFVS(Dataset):
    """Subset of Tanks and Temples Dataset as processed by Free View Synthesis."""

    def _load_renderings(self, config):
        """Load images from disk."""
        render_only = config.render_path and self.split == utils.DataSplit.TEST

        basedir = os.path.join(self.data_dir, 'dense')
        sizes = [f for f in sorted(utils.listdir(basedir)) if f.startswith('ibr3d')]
        sizes = sizes[::-1]

        if config.factor >= len(sizes):
            raise ValueError(f'Factor {config.factor} larger than {len(sizes)}')

        basedir = os.path.join(basedir, sizes[config.factor])
        open_fn = lambda f: utils.open_file(os.path.join(basedir, f), 'rb')

        files = [f for f in sorted(utils.listdir(basedir)) if f.startswith('im_')]
        if render_only:
            files = files[:1]
        images = np.array([np.array(Image.open(open_fn(f))) for f in files]) / 255.

        names = ['Ks', 'Rs', 'ts']
        intrinsics, rot, trans = (np.load(open_fn(f'{n}.npy')) for n in names)

        # Convert poses from colmap world-to-cam into our cam-to-world.
        w2c = np.concatenate([rot, trans[..., None]], axis=-1)
        c2w_colmap = np.linalg.inv(camera_utils.pad_poses(w2c))[:, :3, :4]
        c2w = c2w_colmap @ np.diag(np.array([1, -1, -1, 1]))

        # Reorient poses so z-axis is up
        poses, _ = camera_utils.transform_poses_pca(c2w)
        self.poses = poses

        self.images = images
        self.height, self.width = self.images.shape[1:3]
        self.camtoworlds = poses
        # For now, ignore all but the first focal length in intrinsics
        self.focal = intrinsics[0, 0, 0]
        self.pixtocams = camera_utils.get_pixtocam(self.focal, self.width,
                                                   self.height)

        if render_only:
            render_path = camera_utils.generate_ellipse_path(
                poses,
                config.render_path_frames,
                z_variation=config.z_variation,
                z_phase=config.z_phase)
            self.images = None
            self.camtoworlds = render_path
            self.render_poses = render_path
        else:
            # Select the split.
            all_indices = np.arange(images.shape[0])
            indices = {
                utils.DataSplit.TEST:
                    all_indices[all_indices % config.llffhold == 0],
                utils.DataSplit.TRAIN:
                    all_indices[all_indices % config.llffhold != 0],
            }[self.split]

            self.images = self.images[indices]
            self.camtoworlds = self.camtoworlds[indices]


class DTU(Dataset):
    """DTU Dataset."""

    def _load_renderings(self, config):
        """Load images from disk."""
        if config.render_path:
            raise ValueError('render_path cannot be used for the DTU dataset.')

        images = []
        pixtocams = []
        camtoworlds = []

        # Find out whether the particular scan has 49 or 65 images.
        n_images = len(utils.listdir(self.data_dir)) // 8

        # Loop over all images.
        for i in range(1, n_images + 1):
            # Set light condition string accordingly.
            if config.dtu_light_cond < 7:
                light_str = f'{config.dtu_light_cond}_r' + ('5000'
                                                            if i < 50 else '7000')
            else:
                light_str = 'max'

            # Load image.
            fname = os.path.join(self.data_dir, f'rect_{i:03d}_{light_str}.png')
            image = utils.load_img(fname) / 255.
            if config.factor > 1:
                image = lib_image.downsample(image, config.factor)
            images.append(image)

            # Load projection matrix from file.
            fname = os.path.join(self.data_dir, f'../../cal18/pos_{i:03d}.txt')
            with utils.open_file(fname, 'rb') as f:
                projection = np.loadtxt(f, dtype=np.float32)

            # Decompose projection matrix into pose and camera matrix.
            camera_mat, rot_mat, t = cv2.decomposeProjectionMatrix(projection)[:3]
            camera_mat = camera_mat / camera_mat[2, 2]
            pose = np.eye(4, dtype=np.float32)
            pose[:3, :3] = rot_mat.transpose()
            pose[:3, 3] = (t[:3] / t[3])[:, 0]
            pose = pose[:3]
            camtoworlds.append(pose)

            if config.factor > 0:
                # Scale camera matrix according to downsampling factor.
                camera_mat = np.diag([1. / config.factor, 1. / config.factor, 1.
                                      ]).astype(np.float32) @ camera_mat
            pixtocams.append(np.linalg.inv(camera_mat))

        pixtocams = np.stack(pixtocams)
        camtoworlds = np.stack(camtoworlds)
        images = np.stack(images)

        def rescale_poses(poses):
            """Rescales camera poses according to maximum x/y/z value."""
            s = np.max(np.abs(poses[:, :3, -1]))
            out = np.copy(poses)
            out[:, :3, -1] /= s
            return out

        # Center and scale poses.
        camtoworlds, _ = camera_utils.recenter_poses(camtoworlds)
        camtoworlds = rescale_poses(camtoworlds)
        # Flip y and z axes to get poses in OpenGL coordinate system.
        camtoworlds = camtoworlds @ np.diag([1., -1., -1., 1.]).astype(np.float32)

        all_indices = np.arange(images.shape[0])
        split_indices = {
            utils.DataSplit.TEST: all_indices[all_indices % config.dtuhold == 0],
            utils.DataSplit.TRAIN: all_indices[all_indices % config.dtuhold != 0],
        }
        indices = split_indices[self.split]

        self.images = images[indices]
        self.height, self.width = images.shape[1:3]
        self.camtoworlds = camtoworlds[indices]
        self.pixtocams = pixtocams[indices]


class Multicam(Dataset):
    def __init__(self,
                 split: str,
                 data_dir: str,
                 config: configs.Config):
        super().__init__(split, data_dir, config)

        self.multiscale_levels = config.multiscale_levels

        images, camtoworlds, pixtocams, pixtocam_ndc = \
            self.images, self.camtoworlds, self.pixtocams, self.pixtocam_ndc
        self.heights, self.widths, self.focals, self.images, self.camtoworlds, self.pixtocams, self.lossmults = [], [], [], [], [], [], []
        if pixtocam_ndc is not None:
            self.pixtocam_ndc = []
        else:
            self.pixtocam_ndc = None

        for i in range(self._n_examples):
            for j in range(self.multiscale_levels):
                self.heights.append(self.height // 2 ** j)
                self.widths.append(self.width // 2 ** j)

                self.pixtocams.append(pixtocams @ np.diag([self.height / self.heights[-1],
                                                           self.width / self.widths[-1],
                                                           1.]))
                self.focals.append(1. / self.pixtocams[-1][0, 0])
                if config.forward_facing:
                    # Set the projective matrix defining the NDC transformation.
                    self.pixtocam_ndc.append(pixtocams.reshape(3, 3))

                self.camtoworlds.append(camtoworlds[i])
                self.lossmults.append(2. ** j)
                self.images.append(self.down2(images[i], (self.heights[-1], self.widths[-1])))
        self.pixtocams = np.stack(self.pixtocams)
        self.camtoworlds = np.stack(self.camtoworlds)
        self.cameras = (self.pixtocams,
                        self.camtoworlds,
                        self.distortion_params,
                        np.stack(self.pixtocam_ndc) if self.pixtocam_ndc is not None else None)
        self._generate_rays()

        if self.split == utils.DataSplit.TRAIN:
            # Always flatten out the height x width dimensions
            def flatten(x):
                if x[0] is not None:
                    x = [y.reshape([-1, y.shape[-1]]) for y in x]
                    if self._batching == utils.BatchingMethod.ALL_IMAGES:
                        # If global batching, also concatenate all data into one list
                        x = np.concatenate(x, axis=0)
                    return x
                else:
                    return None

            self.batches = {k: flatten(v) for k, v in self.batches.items()}
        self._n_examples = len(self.camtoworlds)

        # Seed the queue with one batch to avoid race condition.
        if self.split == utils.DataSplit.TRAIN:
            self._next_fn = self._next_train
        else:
            self._next_fn = self._next_test

    def _generate_rays(self):
        if self.global_rank == 0:
            tbar = tqdm(range(len(self.camtoworlds)), desc='Generating rays', leave=False)
        else:
            tbar = range(len(self.camtoworlds))

        self.batches = defaultdict(list)
        for cam_idx in tbar:
            pix_x_int, pix_y_int = camera_utils.pixel_coordinates(
                self.widths[cam_idx], self.heights[cam_idx])
            broadcast_scalar = lambda x: np.broadcast_to(x, pix_x_int.shape)[..., None]
            ray_kwargs = {
                'lossmult': broadcast_scalar(self.lossmults[cam_idx]),
                'near': broadcast_scalar(self.near),
                'far': broadcast_scalar(self.far),
                'cam_idx': broadcast_scalar(cam_idx),
            }

            pixels = dict(pix_x_int=pix_x_int, pix_y_int=pix_y_int, **ray_kwargs)

            batch = camera_utils.cast_ray_batch(self.cameras, pixels, self.camtype)
            if not self.render_path:
                batch['rgb'] = self.images[cam_idx]
            if self._load_disps:
                batch['disps'] = self.disp_images[cam_idx, pix_y_int, pix_x_int]
            if self._load_normals:
                batch['normals'] = self.normal_images[cam_idx, pix_y_int, pix_x_int]
                batch['alphas'] = self.alphas[cam_idx, pix_y_int, pix_x_int]
            for k, v in batch.items():
                self.batches[k].append(v)

    def _next_train(self, item):
        """Sample next training batch (random rays)."""
        # We assume all images in the dataset are the same resolution, so we can use
        # the same width/height for sampling all pixels coordinates in the batch.
        # Batch/patch sampling parameters.
        num_patches = self._batch_size // self._patch_size ** 2
        # Random camera indices.
        if self._batching == utils.BatchingMethod.ALL_IMAGES:
            ray_indices = np.random.randint(0, self.batches['origins'].shape[0], (num_patches, 1, 1))
            batch = {k: v[ray_indices] if v is not None else None for k, v in self.batches.items()}
        else:
            image_index = np.random.randint(0, self._n_examples, ())
            ray_indices = np.random.randint(0, self.batches['origins'][image_index].shape[0], (num_patches,))
            batch = {k: v[image_index][ray_indices] if v is not None else None for k, v in self.batches.items()}
        batch['cam_dirs'] = -self.camtoworlds[batch['cam_idx'][..., 0]][..., 2]
        return {k: torch.from_numpy(v.copy()).float() if v is not None else None for k, v in batch.items()}

    def _next_test(self, item):
        """Sample next test batch (one full image)."""
        batch = {k: v[item] for k, v in self.batches.items()}
        batch['cam_dirs'] = -self.camtoworlds[batch['cam_idx'][..., 0]][..., 2]
        return {k: torch.from_numpy(v.copy()).float() if v is not None else None for k, v in batch.items()}

    @staticmethod
    def down2(img, sh):
        return cv2.resize(img, sh[::-1], interpolation=cv2.INTER_CUBIC)


class MultiLLFF(Multicam, LLFF):
    pass


if __name__ == '__main__':
    from internal import configs
    import accelerate

    config = configs.Config()
    accelerator = accelerate.Accelerator()
    config.world_size = accelerator.num_processes
    config.global_rank = accelerator.process_index
    config.factor = 8
    dataset = LLFF('test', '/SSD_DISK/datasets/360_v2/bicycle', config)
    print(len(dataset))
    for _ in tqdm(dataset):
        pass
    print('done')
    # print(accelerator.process_index)