File size: 28,405 Bytes
b94be35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:35964
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: Despite the crucial role of phosphorus in global food production,
there is a lack of comprehensive analysis on the economic and policy aspects of
phosphorus supply and demand, highlighting a significant knowledge gap in the
field of natural resource economics.
sentences:
- The human brain is intrinsically organized into dynamic, anticorrelated functional
networks
- 'The story of phosphorus: Global food security and food for thought'
- Identifying a knowledge gap in the field of study
- source_sentence: Despite the comprehensive data sources used in this analysis, it
is important to note that uncertainties remain in the estimation of global precipitation,
particularly in data-sparse regions, and careful interpretation of the findings
is advised.
sentences:
- The shuttle radar topography mission—a new class of digital elevation models acquired
by spaceborne radar
- Advising cautious interpretation of the findings
- 'Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations,
Satellite Estimates, and Numerical Model Outputs'
- source_sentence: The study found that participants' value functions were characterized
by loss aversion, risk aversion, and the concavity of the utility function in
gains and the convexity in losses.
sentences:
- Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism
- 'Prospect theory: An analysis of decision under risk'
- Summarising the results section
- source_sentence: Further research is needed to explore the potential role of individual
amino acids in optimizing protein intake and promoting optimal health outcomes.
sentences:
- Suggestions for future work
- Validation of a modified Early Warning Score in medical admissions
- Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol,
Protein and Amino Acids
- source_sentence: The IANA Task Force (2021) builds upon previous research suggesting
that slower gait speed is associated with increased risk of adverse outcomes in
older adults (Levine et al., 2015; Schoenfeld et al., 2016).
sentences:
- 'Transdisciplinary research in sustainability science: practice, principles, and
challenges'
- Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling
older people an International Academy on Nutrition and Aging (IANA) Task Force
- Referring to another writer’s idea(s) or position
datasets:
- Corran/SciTopicTriplets
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: SciGen Eval Set
type: SciGen-Eval-Set
metrics:
- type: cosine_accuracy@1
value: 0.19750889679715303
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5547153024911032
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.81605871886121
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9893238434163701
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.19750889679715303
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1849051008303677
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16321174377224199
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.098932384341637
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19750889679715303
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5547153024911032
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.81605871886121
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9893238434163701
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5663698287874538
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.43265442297915546
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.433292401944685
name: Cosine Map@100
---
# nomic-ai/nomic-embed-text-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) on the [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision ac6fcd72429d86ff25c17895e47a9bfcfc50c1b2 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciTopicNomicEmbed")
# Run inference
sentences = [
'The IANA Task Force (2021) builds upon previous research suggesting that slower gait speed is associated with increased risk of adverse outcomes in older adults (Levine et al., 2015; Schoenfeld et al., 2016).',
'Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force',
'Referring to another writer’s idea(s) or position',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `SciGen-Eval-Set`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1975 |
| cosine_accuracy@3 | 0.5547 |
| cosine_accuracy@5 | 0.8161 |
| cosine_accuracy@10 | 0.9893 |
| cosine_precision@1 | 0.1975 |
| cosine_precision@3 | 0.1849 |
| cosine_precision@5 | 0.1632 |
| cosine_precision@10 | 0.0989 |
| cosine_recall@1 | 0.1975 |
| cosine_recall@3 | 0.5547 |
| cosine_recall@5 | 0.8161 |
| cosine_recall@10 | 0.9893 |
| **cosine_ndcg@10** | **0.5664** |
| cosine_mrr@10 | 0.4327 |
| cosine_map@100 | 0.4333 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### sci_topic_triplets
* Dataset: [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets) at [8bf9936](https://huggingface.co/datasets/Corran/SciTopicTriplets/tree/8bf9936b3b007670b076d43959cdc261383ff88f)
* Size: 35,964 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 17 tokens</li><li>mean: 40.37 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.75 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.74 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
| <code>This study provides comprehensive estimates of life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death and 195 countries and territories from 1980 to 2015, allowing for a detailed understanding of global health trends and patterns over the past four decades.</code> | <code>Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015</code> | <code>Explaining the significance of the current study</code> |
| <code>This paper explores the relationship between the expected value and the volatility of the nominal excess return on stocks using a econometric approach.</code> | <code>On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks</code> | <code>Stating the focus, aim, or argument of a short paper</code> |
| <code>Despite the increasing attention given to the role of audit committees and board of directors in mitigating earnings management, several studies have reported inconclusive or even negative findings.</code> | <code>Audit committee, board of director characteristics, and earnings management</code> | <code>General reference to previous research or scholarship: highlighting negative outcomes</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### sci_topic_triplets
* Dataset: [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets) at [8bf9936](https://huggingface.co/datasets/Corran/SciTopicTriplets/tree/8bf9936b3b007670b076d43959cdc261383ff88f)
* Size: 4,495 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 18 tokens</li><li>mean: 40.1 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.75 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.74 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------|
| <code>In this cluster-randomised controlled trial, the authors aimed to evaluate the effectiveness of introducing the Medical Emergency Team (MET) system in reducing response times and improving patient outcomes in emergency departments.</code> | <code>Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial</code> | <code>Some ways of introducing quotations</code> |
| <code>In the data collection phase of our study, we employed both surveys and interviews as research methods. Specifically, we administered surveys to 200 participants and conducted interviews with 10 key industry experts to gather proportional data on various aspects of management science practices.</code> | <code>Research Methodology: A Step-by-Step Guide for Beginners</code> | <code>Surveys and interviews: Reporting proportions</code> |
| <code>Several density functional theory (DFT) based chemical reactivity indexes, such as the Fukui functions and the electrophilic and nucleophilic indices, are discussed in detail for their ability to predict chemical reactivity.</code> | <code>Chemical reactivity indexes in density functional theory</code> | <code>General comments on the relevant literature</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:------------------------------:|
| 0 | 0 | - | - | 0.5454 |
| 0.1418 | 20 | 4.4872 | 3.1379 | 0.5468 |
| 0.2837 | 40 | 2.241 | 1.7162 | 0.5497 |
| 0.4255 | 60 | 1.5937 | 1.4834 | 0.5524 |
| 0.5674 | 80 | 1.5356 | 1.3911 | 0.5541 |
| 0.7092 | 100 | 1.4106 | 1.3277 | 0.5549 |
| 0.8511 | 120 | 1.2612 | 1.2919 | 0.5561 |
| 0.9929 | 140 | 1.3147 | 1.2642 | 0.5572 |
| 1.1348 | 160 | 1.1527 | 1.2529 | 0.5582 |
| 1.2766 | 180 | 1.2103 | 1.2388 | 0.5593 |
| 1.4184 | 200 | 1.2407 | 1.2235 | 0.5598 |
| 1.5603 | 220 | 1.1356 | 1.2101 | 0.5607 |
| 1.7021 | 240 | 1.1644 | 1.1938 | 0.5605 |
| 1.8440 | 260 | 1.1927 | 1.1864 | 0.5612 |
| 1.9858 | 280 | 1.1909 | 1.1800 | 0.5613 |
| 2.1277 | 300 | 1.0549 | 1.1785 | 0.5620 |
| 2.2695 | 320 | 1.0745 | 1.1755 | 0.5630 |
| 2.4113 | 340 | 1.1485 | 1.1656 | 0.5637 |
| 2.5532 | 360 | 1.1159 | 1.1654 | 0.5637 |
| 2.6950 | 380 | 1.0686 | 1.1623 | 0.5640 |
| 2.8369 | 400 | 1.1436 | 1.1594 | 0.5632 |
| 2.9787 | 420 | 1.0899 | 1.1534 | 0.5644 |
| 3.1206 | 440 | 1.0756 | 1.1512 | 0.5647 |
| 3.2624 | 460 | 1.0203 | 1.1536 | 0.5645 |
| 3.4043 | 480 | 1.1073 | 1.1564 | 0.5650 |
| 3.5461 | 500 | 1.0423 | 1.1594 | 0.5651 |
| 3.6879 | 520 | 1.069 | 1.1514 | 0.5652 |
| 3.8298 | 540 | 1.0101 | 1.1538 | 0.5645 |
| 3.9716 | 560 | 1.0685 | 1.1647 | 0.5650 |
| 4.1135 | 580 | 1.0326 | 1.1618 | 0.5653 |
| 4.2553 | 600 | 1.0729 | 1.1587 | 0.5648 |
| 4.3972 | 620 | 1.0417 | 1.1515 | 0.5655 |
| 4.5390 | 640 | 1.0438 | 1.1528 | 0.5657 |
| 4.6809 | 660 | 1.025 | 1.1433 | 0.5660 |
| 4.8227 | 680 | 1.0526 | 1.1382 | 0.5662 |
| 4.9645 | 700 | 1.0485 | 1.1392 | 0.5663 |
| 5.1064 | 720 | 1.0348 | 1.1411 | 0.5665 |
| 5.2482 | 740 | 1.1001 | 1.1511 | 0.5663 |
| 5.3901 | 760 | 1.0926 | 1.1625 | 0.5662 |
| 5.5319 | 780 | 1.0885 | 1.1487 | 0.5662 |
| 5.6738 | 800 | 1.0942 | 1.1492 | 0.5665 |
| 5.8156 | 820 | 1.0457 | 1.1465 | 0.5666 |
| 5.9574 | 840 | 1.0479 | 1.1461 | 0.5664 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |