File size: 28,405 Bytes
b94be35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:35964
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: Despite the crucial role of phosphorus in global food production,
    there is a lack of comprehensive analysis on the economic and policy aspects of
    phosphorus supply and demand, highlighting a significant knowledge gap in the
    field of natural resource economics.
  sentences:
  - The human brain is intrinsically organized into dynamic, anticorrelated functional
    networks
  - 'The story of phosphorus: Global food security and food for thought'
  - Identifying a knowledge gap in the field of study
- source_sentence: Despite the comprehensive data sources used in this analysis, it
    is important to note that uncertainties remain in the estimation of global precipitation,
    particularly in data-sparse regions, and careful interpretation of the findings
    is advised.
  sentences:
  - The shuttle radar topography mission—a new class of digital elevation models acquired
    by spaceborne radar
  - Advising cautious interpretation of the findings
  - 'Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations,
    Satellite Estimates, and Numerical Model Outputs'
- source_sentence: The study found that participants' value functions were characterized
    by loss aversion, risk aversion, and the concavity of the utility function in
    gains and the convexity in losses.
  sentences:
  - Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism
  - 'Prospect theory: An analysis of decision under risk'
  - Summarising the results section
- source_sentence: Further research is needed to explore the potential role of individual
    amino acids in optimizing protein intake and promoting optimal health outcomes.
  sentences:
  - Suggestions for future work
  - Validation of a modified Early Warning Score in medical admissions
  - Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol,
    Protein and Amino Acids
- source_sentence: The IANA Task Force (2021) builds upon previous research suggesting
    that slower gait speed is associated with increased risk of adverse outcomes in
    older adults (Levine et al., 2015; Schoenfeld et al., 2016).
  sentences:
  - 'Transdisciplinary research in sustainability science: practice, principles, and
    challenges'
  - Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling
    older people an International Academy on Nutrition and Aging (IANA) Task Force
  - Referring to another writer’s idea(s) or position
datasets:
- Corran/SciTopicTriplets
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: nomic-ai/nomic-embed-text-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: SciGen Eval Set
      type: SciGen-Eval-Set
    metrics:
    - type: cosine_accuracy@1
      value: 0.19750889679715303
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5547153024911032
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.81605871886121
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9893238434163701
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.19750889679715303
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1849051008303677
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16321174377224199
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.098932384341637
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19750889679715303
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5547153024911032
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.81605871886121
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9893238434163701
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5663698287874538
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.43265442297915546
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.433292401944685
      name: Cosine Map@100
---

# nomic-ai/nomic-embed-text-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) on the [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision ac6fcd72429d86ff25c17895e47a9bfcfc50c1b2 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciTopicNomicEmbed")
# Run inference
sentences = [
    'The IANA Task Force (2021) builds upon previous research suggesting that slower gait speed is associated with increased risk of adverse outcomes in older adults (Levine et al., 2015; Schoenfeld et al., 2016).',
    'Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force',
    'Referring to another writer’s idea(s) or position',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `SciGen-Eval-Set`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1975     |
| cosine_accuracy@3   | 0.5547     |
| cosine_accuracy@5   | 0.8161     |
| cosine_accuracy@10  | 0.9893     |
| cosine_precision@1  | 0.1975     |
| cosine_precision@3  | 0.1849     |
| cosine_precision@5  | 0.1632     |
| cosine_precision@10 | 0.0989     |
| cosine_recall@1     | 0.1975     |
| cosine_recall@3     | 0.5547     |
| cosine_recall@5     | 0.8161     |
| cosine_recall@10    | 0.9893     |
| **cosine_ndcg@10**  | **0.5664** |
| cosine_mrr@10       | 0.4327     |
| cosine_map@100      | 0.4333     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sci_topic_triplets

* Dataset: [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets) at [8bf9936](https://huggingface.co/datasets/Corran/SciTopicTriplets/tree/8bf9936b3b007670b076d43959cdc261383ff88f)
* Size: 35,964 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | positive                                                                          | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                            |
  | details | <ul><li>min: 17 tokens</li><li>mean: 40.37 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.75 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.74 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
  | query                                                                                                                                                                                                                                                                                                              | positive                                                                                                                                                                                                             | negative                                                                                           |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
  | <code>This study provides comprehensive estimates of life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death and 195 countries and territories from 1980 to 2015, allowing for a detailed understanding of global health trends and patterns over the past four decades.</code> | <code>Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015</code> | <code>Explaining the significance of the current study</code>                                      |
  | <code>This paper explores the relationship between the expected value and the volatility of the nominal excess return on stocks using a econometric approach.</code>                                                                                                                                               | <code>On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks</code>                                                                                                    | <code>Stating the focus, aim, or argument of a short paper</code>                                  |
  | <code>Despite the increasing attention given to the role of audit committees and board of directors in mitigating earnings management, several studies have reported inconclusive or even negative findings.</code>                                                                                                | <code>Audit committee, board of director characteristics, and earnings management</code>                                                                                                                             | <code>General reference to previous research or scholarship: highlighting negative outcomes</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### sci_topic_triplets

* Dataset: [sci_topic_triplets](https://huggingface.co/datasets/Corran/SciTopicTriplets) at [8bf9936](https://huggingface.co/datasets/Corran/SciTopicTriplets/tree/8bf9936b3b007670b076d43959cdc261383ff88f)
* Size: 4,495 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 18 tokens</li><li>mean: 40.1 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.75 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.74 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
  | query                                                                                                                                                                                                                                                                                                                | positive                                                                                                    | negative                                                   |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------|
  | <code>In this cluster-randomised controlled trial, the authors aimed to evaluate the effectiveness of introducing the Medical Emergency Team (MET) system in reducing response times and improving patient outcomes in emergency departments.</code>                                                                 | <code>Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial</code> | <code>Some ways of introducing quotations</code>           |
  | <code>In the data collection phase of our study, we employed both surveys and interviews as research methods. Specifically, we administered surveys to 200 participants and conducted interviews with 10 key industry experts to gather proportional data on various aspects of management science practices.</code> | <code>Research Methodology: A Step-by-Step Guide for Beginners</code>                                       | <code>Surveys and interviews: Reporting proportions</code> |
  | <code>Several density functional theory (DFT) based chemical reactivity indexes, such as the Fukui functions and the electrophilic and nucleophilic indices, are discussed in detail for their ability to predict chemical reactivity.</code>                                                                        | <code>Chemical reactivity indexes in density functional theory</code>                                       | <code>General comments on the relevant literature</code>   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:------------------------------:|
| 0      | 0    | -             | -               | 0.5454                         |
| 0.1418 | 20   | 4.4872        | 3.1379          | 0.5468                         |
| 0.2837 | 40   | 2.241         | 1.7162          | 0.5497                         |
| 0.4255 | 60   | 1.5937        | 1.4834          | 0.5524                         |
| 0.5674 | 80   | 1.5356        | 1.3911          | 0.5541                         |
| 0.7092 | 100  | 1.4106        | 1.3277          | 0.5549                         |
| 0.8511 | 120  | 1.2612        | 1.2919          | 0.5561                         |
| 0.9929 | 140  | 1.3147        | 1.2642          | 0.5572                         |
| 1.1348 | 160  | 1.1527        | 1.2529          | 0.5582                         |
| 1.2766 | 180  | 1.2103        | 1.2388          | 0.5593                         |
| 1.4184 | 200  | 1.2407        | 1.2235          | 0.5598                         |
| 1.5603 | 220  | 1.1356        | 1.2101          | 0.5607                         |
| 1.7021 | 240  | 1.1644        | 1.1938          | 0.5605                         |
| 1.8440 | 260  | 1.1927        | 1.1864          | 0.5612                         |
| 1.9858 | 280  | 1.1909        | 1.1800          | 0.5613                         |
| 2.1277 | 300  | 1.0549        | 1.1785          | 0.5620                         |
| 2.2695 | 320  | 1.0745        | 1.1755          | 0.5630                         |
| 2.4113 | 340  | 1.1485        | 1.1656          | 0.5637                         |
| 2.5532 | 360  | 1.1159        | 1.1654          | 0.5637                         |
| 2.6950 | 380  | 1.0686        | 1.1623          | 0.5640                         |
| 2.8369 | 400  | 1.1436        | 1.1594          | 0.5632                         |
| 2.9787 | 420  | 1.0899        | 1.1534          | 0.5644                         |
| 3.1206 | 440  | 1.0756        | 1.1512          | 0.5647                         |
| 3.2624 | 460  | 1.0203        | 1.1536          | 0.5645                         |
| 3.4043 | 480  | 1.1073        | 1.1564          | 0.5650                         |
| 3.5461 | 500  | 1.0423        | 1.1594          | 0.5651                         |
| 3.6879 | 520  | 1.069         | 1.1514          | 0.5652                         |
| 3.8298 | 540  | 1.0101        | 1.1538          | 0.5645                         |
| 3.9716 | 560  | 1.0685        | 1.1647          | 0.5650                         |
| 4.1135 | 580  | 1.0326        | 1.1618          | 0.5653                         |
| 4.2553 | 600  | 1.0729        | 1.1587          | 0.5648                         |
| 4.3972 | 620  | 1.0417        | 1.1515          | 0.5655                         |
| 4.5390 | 640  | 1.0438        | 1.1528          | 0.5657                         |
| 4.6809 | 660  | 1.025         | 1.1433          | 0.5660                         |
| 4.8227 | 680  | 1.0526        | 1.1382          | 0.5662                         |
| 4.9645 | 700  | 1.0485        | 1.1392          | 0.5663                         |
| 5.1064 | 720  | 1.0348        | 1.1411          | 0.5665                         |
| 5.2482 | 740  | 1.1001        | 1.1511          | 0.5663                         |
| 5.3901 | 760  | 1.0926        | 1.1625          | 0.5662                         |
| 5.5319 | 780  | 1.0885        | 1.1487          | 0.5662                         |
| 5.6738 | 800  | 1.0942        | 1.1492          | 0.5665                         |
| 5.8156 | 820  | 1.0457        | 1.1465          | 0.5666                         |
| 5.9574 | 840  | 1.0479        | 1.1461          | 0.5664                         |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->