Corran commited on
Commit
8ae4f89
·
verified ·
1 Parent(s): 2448f6e

Add new SentenceTransformer model

Browse files
0_StaticEmbedding/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42ff906af37153140b3d06ce0a5fa9cc0a0315a681181fb8ebed5fdb9e2b37bc
3
+ size 93763680
0_StaticEmbedding/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
README.md ADDED
@@ -0,0 +1,595 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:35934
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ widget:
11
+ - source_sentence: Stating purpose of the current research with reference to gaps
12
+ or issues in the literature
13
+ sentences:
14
+ - During the 15-year study, 10% of the osseointegrated implants in the edentulous
15
+ jaw showed signs of peri-implantitis, leading to their failure.
16
+ - This paper provides an in-depth exploration of the qualitative case study methodology,
17
+ addressing the lack of comprehensive guidance for novice researchers in this area.
18
+ - As a novice researcher in management science, I have been drawn to the qualitative
19
+ case study methodology due to its ability to provide rich, in-depth insights into
20
+ complex real-world situations.
21
+ - source_sentence: Indicating missing, weak, or contradictory evidence
22
+ sentences:
23
+ - This paper contributes to the literature on the financial system by examining
24
+ the relationship between bank size, bank capital, and the bank lending channel
25
+ using a unique dataset of US banks during the global financial crisis.
26
+ - A total of 150 patients with a clinical diagnosis of osteoarthritis of the hip
27
+ or knee, according to the American College of Rheumatology criteria, were included
28
+ in the study.
29
+ - Despite the widespread use of the WOMAC (Western Ontario and McMaster Universities
30
+ Osteoarthritis Index) questionnaire in clinical practice and research, there is
31
+ a lack of consensus regarding its responsiveness to antirheumatic drug therapy
32
+ in patients with osteoarthritis of the hip or knee.
33
+ - source_sentence: 'Establishing the importance of the topic for the world or society:
34
+ time frame given'
35
+ sentences:
36
+ - The Th/Hf ratios of the basaltic lavas from the British Tertiary Volcanic Province
37
+ range from 4.2 to 5.5, as shown in Table 1.
38
+ - The use of organometal halide perovskites as visible-light sensitizers for photovoltaic
39
+ cells has gained significant attention in the optoelectronics community due to
40
+ their promising photovoltaic performance and cost-effective fabrication since
41
+ the late 2000s.
42
+ - Table 1 summarizes the power conversion efficiencies (PCEs) and certifications
43
+ of the best-performing perovskite solar cells reported in the literature.
44
+ - source_sentence: Describing the research design and the methods used
45
+ sentences:
46
+ - This study aims to evaluate the efficacy and safety of preoperative radiotherapy
47
+ followed by total mesorectal excision in the treatment of resectable rectal cancer.
48
+ - TREE-PUZZLE's parallel computing implementation significantly reduces the time
49
+ required for maximum likelihood phylogenetic analysis compared to traditional
50
+ methods, supporting previous findings of the importance of parallelization in
51
+ phylogenetics.
52
+ - This study investigates the efficacy of preoperative radiotherapy followed by
53
+ total mesorectal excision in the treatment of resectable rectal cancer.
54
+ - source_sentence: 'Surveys and interviews: Introducing excerpts from interview data'
55
+ sentences:
56
+ - Previous research on international trade under the WTO regime has explored various
57
+ approaches to understanding the uneven promotion of trade (Hoekstra & Kostecki,
58
+ 2001; Cline, 2004, ...).
59
+ - Through surveys and interviews, multiliterate teachers expressed a shared belief
60
+ in the importance of fostering students' ability to navigate multiple discourse
61
+ communities.
62
+ - The authors employ a constructivist approach to learning, where students build
63
+ knowledge through active engagement with multimedia texts and collaborative discussions.
64
+ datasets:
65
+ - Corran/SciGenTriplets
66
+ pipeline_tag: sentence-similarity
67
+ library_name: sentence-transformers
68
+ metrics:
69
+ - cosine_accuracy@1
70
+ - cosine_accuracy@3
71
+ - cosine_accuracy@5
72
+ - cosine_accuracy@10
73
+ - cosine_precision@1
74
+ - cosine_precision@3
75
+ - cosine_precision@5
76
+ - cosine_precision@10
77
+ - cosine_recall@1
78
+ - cosine_recall@3
79
+ - cosine_recall@5
80
+ - cosine_recall@10
81
+ - cosine_ndcg@10
82
+ - cosine_mrr@10
83
+ - cosine_map@100
84
+ model-index:
85
+ - name: SentenceTransformer
86
+ results:
87
+ - task:
88
+ type: information-retrieval
89
+ name: Information Retrieval
90
+ dataset:
91
+ name: SciGen Eval Set
92
+ type: SciGen-Eval-Set
93
+ metrics:
94
+ - type: cosine_accuracy@1
95
+ value: 0.8918076580587712
96
+ name: Cosine Accuracy@1
97
+ - type: cosine_accuracy@3
98
+ value: 0.9307658058771149
99
+ name: Cosine Accuracy@3
100
+ - type: cosine_accuracy@5
101
+ value: 0.9481300089047195
102
+ name: Cosine Accuracy@5
103
+ - type: cosine_accuracy@10
104
+ value: 0.9668299198575245
105
+ name: Cosine Accuracy@10
106
+ - type: cosine_precision@1
107
+ value: 0.8918076580587712
108
+ name: Cosine Precision@1
109
+ - type: cosine_precision@3
110
+ value: 0.3102552686257049
111
+ name: Cosine Precision@3
112
+ - type: cosine_precision@5
113
+ value: 0.18962600178094388
114
+ name: Cosine Precision@5
115
+ - type: cosine_precision@10
116
+ value: 0.09668299198575243
117
+ name: Cosine Precision@10
118
+ - type: cosine_recall@1
119
+ value: 0.8918076580587712
120
+ name: Cosine Recall@1
121
+ - type: cosine_recall@3
122
+ value: 0.9307658058771149
123
+ name: Cosine Recall@3
124
+ - type: cosine_recall@5
125
+ value: 0.9481300089047195
126
+ name: Cosine Recall@5
127
+ - type: cosine_recall@10
128
+ value: 0.9668299198575245
129
+ name: Cosine Recall@10
130
+ - type: cosine_ndcg@10
131
+ value: 0.9279217256301748
132
+ name: Cosine Ndcg@10
133
+ - type: cosine_mrr@10
134
+ value: 0.9156546382281018
135
+ name: Cosine Mrr@10
136
+ - type: cosine_map@100
137
+ value: 0.9171082586239344
138
+ name: Cosine Map@100
139
+ ---
140
+
141
+ # SentenceTransformer
142
+
143
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
144
+
145
+ ## Model Details
146
+
147
+ ### Model Description
148
+ - **Model Type:** Sentence Transformer
149
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
150
+ - **Maximum Sequence Length:** inf tokens
151
+ - **Output Dimensionality:** 768 dimensions
152
+ - **Similarity Function:** Cosine Similarity
153
+ - **Training Dataset:**
154
+ - [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets)
155
+ <!-- - **Language:** Unknown -->
156
+ <!-- - **License:** Unknown -->
157
+
158
+ ### Model Sources
159
+
160
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
161
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
162
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
163
+
164
+ ### Full Model Architecture
165
+
166
+ ```
167
+ SentenceTransformer(
168
+ (0): StaticEmbedding(
169
+ (embedding): EmbeddingBag(30522, 768, mode='mean')
170
+ )
171
+ )
172
+ ```
173
+
174
+ ## Usage
175
+
176
+ ### Direct Usage (Sentence Transformers)
177
+
178
+ First install the Sentence Transformers library:
179
+
180
+ ```bash
181
+ pip install -U sentence-transformers
182
+ ```
183
+
184
+ Then you can load this model and run inference.
185
+ ```python
186
+ from sentence_transformers import SentenceTransformer
187
+
188
+ # Download from the 🤗 Hub
189
+ model = SentenceTransformer("Corran/SciGenNomicEmbedStatic")
190
+ # Run inference
191
+ sentences = [
192
+ 'Surveys and interviews: Introducing excerpts from interview data',
193
+ "Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
194
+ 'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
195
+ ]
196
+ embeddings = model.encode(sentences)
197
+ print(embeddings.shape)
198
+ # [3, 768]
199
+
200
+ # Get the similarity scores for the embeddings
201
+ similarities = model.similarity(embeddings, embeddings)
202
+ print(similarities.shape)
203
+ # [3, 3]
204
+ ```
205
+
206
+ <!--
207
+ ### Direct Usage (Transformers)
208
+
209
+ <details><summary>Click to see the direct usage in Transformers</summary>
210
+
211
+ </details>
212
+ -->
213
+
214
+ <!--
215
+ ### Downstream Usage (Sentence Transformers)
216
+
217
+ You can finetune this model on your own dataset.
218
+
219
+ <details><summary>Click to expand</summary>
220
+
221
+ </details>
222
+ -->
223
+
224
+ <!--
225
+ ### Out-of-Scope Use
226
+
227
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
228
+ -->
229
+
230
+ ## Evaluation
231
+
232
+ ### Metrics
233
+
234
+ #### Information Retrieval
235
+
236
+ * Dataset: `SciGen-Eval-Set`
237
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
238
+
239
+ | Metric | Value |
240
+ |:--------------------|:-----------|
241
+ | cosine_accuracy@1 | 0.8918 |
242
+ | cosine_accuracy@3 | 0.9308 |
243
+ | cosine_accuracy@5 | 0.9481 |
244
+ | cosine_accuracy@10 | 0.9668 |
245
+ | cosine_precision@1 | 0.8918 |
246
+ | cosine_precision@3 | 0.3103 |
247
+ | cosine_precision@5 | 0.1896 |
248
+ | cosine_precision@10 | 0.0967 |
249
+ | cosine_recall@1 | 0.8918 |
250
+ | cosine_recall@3 | 0.9308 |
251
+ | cosine_recall@5 | 0.9481 |
252
+ | cosine_recall@10 | 0.9668 |
253
+ | **cosine_ndcg@10** | **0.9279** |
254
+ | cosine_mrr@10 | 0.9157 |
255
+ | cosine_map@100 | 0.9171 |
256
+
257
+ <!--
258
+ ## Bias, Risks and Limitations
259
+
260
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
261
+ -->
262
+
263
+ <!--
264
+ ### Recommendations
265
+
266
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
267
+ -->
268
+
269
+ ## Training Details
270
+
271
+ ### Training Dataset
272
+
273
+ #### sci_gen_colbert_triplets
274
+
275
+ * Dataset: [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) at [44071bd](https://huggingface.co/datasets/Corran/SciGenColbertTriplets/tree/44071bdd857e9598233bd44a26a9433b46f25458)
276
+ * Size: 35,934 training samples
277
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
278
+ * Approximate statistics based on the first 1000 samples:
279
+ | | query | positive | negative |
280
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
281
+ | type | string | string | string |
282
+ | details | <ul><li>min: 20 characters</li><li>mean: 50.28 characters</li><li>max: 120 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 206.53 characters</li><li>max: 401 characters</li></ul> | <ul><li>min: 96 characters</li><li>mean: 209.67 characters</li><li>max: 418 characters</li></ul> |
283
+ * Samples:
284
+ | query | positive | negative |
285
+ |:-----------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
286
+ | <code>Previous research: highlighting negative outcomes</code> | <code>Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers.</code> | <code>This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.</code> |
287
+ | <code>Synthesising sources: contrasting evidence or ideas</code> | <code>Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001).</code> | <code>Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.</code> |
288
+ | <code>Previous research: Approaches taken</code> | <code>Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988).</code> | <code>The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.</code> |
289
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
290
+ ```json
291
+ {
292
+ "loss": "MultipleNegativesRankingLoss",
293
+ "matryoshka_dims": [
294
+ 768,
295
+ 384,
296
+ 256,
297
+ 128,
298
+ 64,
299
+ 32
300
+ ],
301
+ "matryoshka_weights": [
302
+ 1,
303
+ 1,
304
+ 1,
305
+ 1,
306
+ 1,
307
+ 1
308
+ ],
309
+ "n_dims_per_step": -1
310
+ }
311
+ ```
312
+
313
+ ### Evaluation Dataset
314
+
315
+ #### sci_gen_colbert_triplets
316
+
317
+ * Dataset: [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) at [44071bd](https://huggingface.co/datasets/Corran/SciGenColbertTriplets/tree/44071bdd857e9598233bd44a26a9433b46f25458)
318
+ * Size: 4,492 evaluation samples
319
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
320
+ * Approximate statistics based on the first 1000 samples:
321
+ | | query | positive | negative |
322
+ |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
323
+ | type | string | string | string |
324
+ | details | <ul><li>min: 20 characters</li><li>mean: 50.59 characters</li><li>max: 120 characters</li></ul> | <ul><li>min: 98 characters</li><li>mean: 203.98 characters</li><li>max: 448 characters</li></ul> | <ul><li>min: 36 characters</li><li>mean: 204.82 characters</li><li>max: 422 characters</li></ul> |
325
+ * Samples:
326
+ | query | positive | negative |
327
+ |:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
328
+ | <code>Providing background information: reference to the purpose of the study</code> | <code>This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains.</code> | <code>Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.</code> |
329
+ | <code>Providing background information: reference to the literature</code> | <code>According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates.</code> | <code>This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.</code> |
330
+ | <code>General comments on the relevant literature</code> | <code>Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties.</code> | <code>Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.</code> |
331
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
332
+ ```json
333
+ {
334
+ "loss": "MultipleNegativesRankingLoss",
335
+ "matryoshka_dims": [
336
+ 768,
337
+ 384,
338
+ 256,
339
+ 128,
340
+ 64,
341
+ 32
342
+ ],
343
+ "matryoshka_weights": [
344
+ 1,
345
+ 1,
346
+ 1,
347
+ 1,
348
+ 1,
349
+ 1
350
+ ],
351
+ "n_dims_per_step": -1
352
+ }
353
+ ```
354
+
355
+ ### Training Hyperparameters
356
+ #### Non-Default Hyperparameters
357
+
358
+ - `eval_strategy`: steps
359
+ - `per_device_train_batch_size`: 4096
360
+ - `per_device_eval_batch_size`: 4096
361
+ - `learning_rate`: 0.02
362
+ - `num_train_epochs`: 50
363
+ - `warmup_ratio`: 0.1
364
+ - `fp16`: True
365
+
366
+ #### All Hyperparameters
367
+ <details><summary>Click to expand</summary>
368
+
369
+ - `overwrite_output_dir`: False
370
+ - `do_predict`: False
371
+ - `eval_strategy`: steps
372
+ - `prediction_loss_only`: True
373
+ - `per_device_train_batch_size`: 4096
374
+ - `per_device_eval_batch_size`: 4096
375
+ - `per_gpu_train_batch_size`: None
376
+ - `per_gpu_eval_batch_size`: None
377
+ - `gradient_accumulation_steps`: 1
378
+ - `eval_accumulation_steps`: None
379
+ - `torch_empty_cache_steps`: None
380
+ - `learning_rate`: 0.02
381
+ - `weight_decay`: 0.0
382
+ - `adam_beta1`: 0.9
383
+ - `adam_beta2`: 0.999
384
+ - `adam_epsilon`: 1e-08
385
+ - `max_grad_norm`: 1.0
386
+ - `num_train_epochs`: 50
387
+ - `max_steps`: -1
388
+ - `lr_scheduler_type`: linear
389
+ - `lr_scheduler_kwargs`: {}
390
+ - `warmup_ratio`: 0.1
391
+ - `warmup_steps`: 0
392
+ - `log_level`: passive
393
+ - `log_level_replica`: warning
394
+ - `log_on_each_node`: True
395
+ - `logging_nan_inf_filter`: True
396
+ - `save_safetensors`: True
397
+ - `save_on_each_node`: False
398
+ - `save_only_model`: False
399
+ - `restore_callback_states_from_checkpoint`: False
400
+ - `no_cuda`: False
401
+ - `use_cpu`: False
402
+ - `use_mps_device`: False
403
+ - `seed`: 42
404
+ - `data_seed`: None
405
+ - `jit_mode_eval`: False
406
+ - `use_ipex`: False
407
+ - `bf16`: False
408
+ - `fp16`: True
409
+ - `fp16_opt_level`: O1
410
+ - `half_precision_backend`: auto
411
+ - `bf16_full_eval`: False
412
+ - `fp16_full_eval`: False
413
+ - `tf32`: None
414
+ - `local_rank`: 0
415
+ - `ddp_backend`: None
416
+ - `tpu_num_cores`: None
417
+ - `tpu_metrics_debug`: False
418
+ - `debug`: []
419
+ - `dataloader_drop_last`: False
420
+ - `dataloader_num_workers`: 0
421
+ - `dataloader_prefetch_factor`: None
422
+ - `past_index`: -1
423
+ - `disable_tqdm`: False
424
+ - `remove_unused_columns`: True
425
+ - `label_names`: None
426
+ - `load_best_model_at_end`: False
427
+ - `ignore_data_skip`: False
428
+ - `fsdp`: []
429
+ - `fsdp_min_num_params`: 0
430
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
431
+ - `fsdp_transformer_layer_cls_to_wrap`: None
432
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
433
+ - `deepspeed`: None
434
+ - `label_smoothing_factor`: 0.0
435
+ - `optim`: adamw_torch
436
+ - `optim_args`: None
437
+ - `adafactor`: False
438
+ - `group_by_length`: False
439
+ - `length_column_name`: length
440
+ - `ddp_find_unused_parameters`: None
441
+ - `ddp_bucket_cap_mb`: None
442
+ - `ddp_broadcast_buffers`: False
443
+ - `dataloader_pin_memory`: True
444
+ - `dataloader_persistent_workers`: False
445
+ - `skip_memory_metrics`: True
446
+ - `use_legacy_prediction_loop`: False
447
+ - `push_to_hub`: False
448
+ - `resume_from_checkpoint`: None
449
+ - `hub_model_id`: None
450
+ - `hub_strategy`: every_save
451
+ - `hub_private_repo`: None
452
+ - `hub_always_push`: False
453
+ - `gradient_checkpointing`: False
454
+ - `gradient_checkpointing_kwargs`: None
455
+ - `include_inputs_for_metrics`: False
456
+ - `include_for_metrics`: []
457
+ - `eval_do_concat_batches`: True
458
+ - `fp16_backend`: auto
459
+ - `push_to_hub_model_id`: None
460
+ - `push_to_hub_organization`: None
461
+ - `mp_parameters`:
462
+ - `auto_find_batch_size`: False
463
+ - `full_determinism`: False
464
+ - `torchdynamo`: None
465
+ - `ray_scope`: last
466
+ - `ddp_timeout`: 1800
467
+ - `torch_compile`: False
468
+ - `torch_compile_backend`: None
469
+ - `torch_compile_mode`: None
470
+ - `dispatch_batches`: None
471
+ - `split_batches`: None
472
+ - `include_tokens_per_second`: False
473
+ - `include_num_input_tokens_seen`: False
474
+ - `neftune_noise_alpha`: None
475
+ - `optim_target_modules`: None
476
+ - `batch_eval_metrics`: False
477
+ - `eval_on_start`: False
478
+ - `use_liger_kernel`: False
479
+ - `eval_use_gather_object`: False
480
+ - `average_tokens_across_devices`: False
481
+ - `prompts`: None
482
+ - `batch_sampler`: batch_sampler
483
+ - `multi_dataset_batch_sampler`: proportional
484
+
485
+ </details>
486
+
487
+ ### Training Logs
488
+ | Epoch | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
489
+ |:-------:|:----:|:-------------:|:---------------:|:------------------------------:|
490
+ | -1 | -1 | - | - | 0.0860 |
491
+ | 1.1111 | 10 | 64.4072 | 61.6146 | 0.0919 |
492
+ | 2.2222 | 20 | 60.2737 | 56.0852 | 0.1130 |
493
+ | 3.3333 | 30 | 53.8742 | 50.1738 | 0.1611 |
494
+ | 4.4444 | 40 | 47.9741 | 45.6099 | 0.2666 |
495
+ | 5.5556 | 50 | 43.3533 | 42.3335 | 0.4579 |
496
+ | 6.6667 | 60 | 39.8746 | 40.0990 | 0.6244 |
497
+ | 7.7778 | 70 | 37.4077 | 38.4205 | 0.7223 |
498
+ | 8.8889 | 80 | 35.3558 | 37.0939 | 0.7847 |
499
+ | 10.0 | 90 | 33.5816 | 36.0200 | 0.8248 |
500
+ | 11.1111 | 100 | 32.4019 | 35.1148 | 0.8469 |
501
+ | 12.2222 | 110 | 31.3427 | 34.3602 | 0.8658 |
502
+ | 13.3333 | 120 | 30.4578 | 33.7324 | 0.8788 |
503
+ | 14.4444 | 130 | 29.7019 | 33.2120 | 0.8882 |
504
+ | 15.5556 | 140 | 29.1315 | 32.7679 | 0.8963 |
505
+ | 16.6667 | 150 | 28.6226 | 32.3942 | 0.9016 |
506
+ | 17.7778 | 160 | 28.195 | 32.0693 | 0.9061 |
507
+ | 18.8889 | 170 | 27.8242 | 31.7708 | 0.9096 |
508
+ | 20.0 | 180 | 27.373 | 31.5369 | 0.9137 |
509
+ | 21.1111 | 190 | 27.2436 | 31.3331 | 0.9168 |
510
+ | 22.2222 | 200 | 27.0084 | 31.1571 | 0.9188 |
511
+ | 23.3333 | 210 | 26.8023 | 31.0074 | 0.9205 |
512
+ | 24.4444 | 220 | 26.6754 | 30.8726 | 0.9217 |
513
+ | 25.5556 | 230 | 26.4875 | 30.7545 | 0.9224 |
514
+ | 26.6667 | 240 | 26.3846 | 30.6494 | 0.9236 |
515
+ | 27.7778 | 250 | 26.2546 | 30.5660 | 0.9243 |
516
+ | 28.8889 | 260 | 26.1752 | 30.4826 | 0.9248 |
517
+ | 30.0 | 270 | 25.9247 | 30.4060 | 0.9252 |
518
+ | 31.1111 | 280 | 25.9807 | 30.3540 | 0.9261 |
519
+ | 32.2222 | 290 | 25.9153 | 30.3040 | 0.9262 |
520
+ | 33.3333 | 300 | 25.8643 | 30.2585 | 0.9265 |
521
+ | 34.4444 | 310 | 25.7946 | 30.2183 | 0.9270 |
522
+ | 35.5556 | 320 | 25.7723 | 30.1799 | 0.9272 |
523
+ | 36.6667 | 330 | 25.7091 | 30.1539 | 0.9275 |
524
+ | 37.7778 | 340 | 25.6655 | 30.1296 | 0.9275 |
525
+ | 38.8889 | 350 | 25.6465 | 30.1120 | 0.9276 |
526
+ | 40.0 | 360 | 25.4654 | 30.0834 | 0.9279 |
527
+
528
+
529
+ ### Framework Versions
530
+ - Python: 3.11.11
531
+ - Sentence Transformers: 3.4.0
532
+ - Transformers: 4.47.1
533
+ - PyTorch: 2.5.1+cu121
534
+ - Accelerate: 1.2.1
535
+ - Datasets: 3.2.0
536
+ - Tokenizers: 0.21.0
537
+
538
+ ## Citation
539
+
540
+ ### BibTeX
541
+
542
+ #### Sentence Transformers
543
+ ```bibtex
544
+ @inproceedings{reimers-2019-sentence-bert,
545
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
546
+ author = "Reimers, Nils and Gurevych, Iryna",
547
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
548
+ month = "11",
549
+ year = "2019",
550
+ publisher = "Association for Computational Linguistics",
551
+ url = "https://arxiv.org/abs/1908.10084",
552
+ }
553
+ ```
554
+
555
+ #### MatryoshkaLoss
556
+ ```bibtex
557
+ @misc{kusupati2024matryoshka,
558
+ title={Matryoshka Representation Learning},
559
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
560
+ year={2024},
561
+ eprint={2205.13147},
562
+ archivePrefix={arXiv},
563
+ primaryClass={cs.LG}
564
+ }
565
+ ```
566
+
567
+ #### MultipleNegativesRankingLoss
568
+ ```bibtex
569
+ @misc{henderson2017efficient,
570
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
571
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
572
+ year={2017},
573
+ eprint={1705.00652},
574
+ archivePrefix={arXiv},
575
+ primaryClass={cs.CL}
576
+ }
577
+ ```
578
+
579
+ <!--
580
+ ## Glossary
581
+
582
+ *Clearly define terms in order to be accessible across audiences.*
583
+ -->
584
+
585
+ <!--
586
+ ## Model Card Authors
587
+
588
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
589
+ -->
590
+
591
+ <!--
592
+ ## Model Card Contact
593
+
594
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
595
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_StaticEmbedding",
6
+ "type": "sentence_transformers.models.StaticEmbedding"
7
+ }
8
+ ]