CoreyMorris commited on
Commit
6c97511
·
1 Parent(s): 22de492

experiment 3 with rl zoo

Browse files
Files changed (4) hide show
  1. ppo-LunarLander-v2.zip +1 -1
  2. ppo-LunarLander-v2/data +13 -13
  3. replay.mp4 +2 -2
  4. results.json +1 -1
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:45a5c5ec88c0bbbaf843908384d80bb24c5896a210c48081b4676a9703213a5b
3
  size 150358
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d35571b720f2728889521bc0ee5d1b304ad4b1e68f1430a171ce400c3a365bf
3
  size 150358
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad55e71940>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad55e719d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad55e71a60>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad55e71af0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fad55e71b80>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fad55e71c10>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad55e71ca0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad55e71d30>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fad55e71dc0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad55e71e50>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad55e71ee0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad55e71f70>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7fad55e6d690>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7feefd666940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feefd6669d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feefd666a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feefd666af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7feefd666b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7feefd666c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7feefd666ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feefd666d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7feefd666dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feefd666e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feefd666ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feefd666f70>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7feefd6626f0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c424461a9f15448f61c532a9cd1d5fe942702c145d8a62bef025376971d7dfb4
3
- size 191239
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cd210e5ee87562593f09bdb23adb1e42c795234afb35532029295cf550042a5
3
+ size 188704
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 274.7358741, "std_reward": 20.58205765183714, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T01:09:50.194467"}
 
1
+ {"mean_reward": 274.7358741, "std_reward": 20.58205765183714, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T01:10:15.449932"}