latest bitsnbytes model trained on GOCO (4-27-24)
Browse filesyolov5-based detection model for use detecting common food items in broad categories
- GroceryInContext.yaml +12 -0
- bitsnbytes.pt +3 -0
GroceryInContext.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
2 |
+
path: ./ # dataset root dir
|
3 |
+
train: images/train # train images (relative to 'path') 128 images
|
4 |
+
val: images/train # val images (relative to 'path') 128 images
|
5 |
+
test: # test images (optional)
|
6 |
+
|
7 |
+
names:
|
8 |
+
0: box
|
9 |
+
1: bottle
|
10 |
+
2: pouch
|
11 |
+
3: cylinder
|
12 |
+
4: book
|
bitsnbytes.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efd993646bcfb8adb09b0f68e131b1c0321cd05d6acab5d218b9cd7a97b06dcf
|
3 |
+
size 14444776
|