Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,50 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
---
|
5 |
+
|
6 |
+
# CodeRosetta
|
7 |
+
## Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming ([📃Paper](https://arxiv.org/abs/2410.20527), [🔗Website](https://coderosetta.com/)).
|
8 |
+
|
9 |
+
|
10 |
+
CodeRosetta is an EncoderDecoder translation model. It supports the translation of C++, CUDA, and Fortran. \
|
11 |
+
This is the base version of C++-Fortran translation model without being fine-tuned.
|
12 |
+
|
13 |
+
### How to use
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoTokenizer, EncoderDecoderModel
|
17 |
+
|
18 |
+
# Load the CodeRosetta model and tokenizer
|
19 |
+
model = EncoderDecoderModel.from_pretrained('CodeRosetta/CodeRosetta_cpp_fortran_base')
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained('CodeRosetta/CodeRosetta_cpp_fortran_base')
|
21 |
+
|
22 |
+
# Encode the input Fortran Code
|
23 |
+
input_fortran_code = "program DRB047_doallchar_orig_no\n use omp_lib\n implicit none\n\n character(len=100), dimension(:), allocatable :: a\n character(50) :: str\n integer :: i\n\n allocate (a(100))\n\n !$omp parallel do private(str)\n do i = 1, 100\n write( str, '(i10)' ) i\n a(i) = str\n end do\n !$omp end parallel do\n\n print*,'a(i)',a(23)\nend program"
|
24 |
+
input_ids = tokenizer.encode(input_fortran_code, return_tensors="pt")
|
25 |
+
|
26 |
+
# Set the start token to <CPP>
|
27 |
+
start_token = "<CPP>" # set start token to <FORTAN> if input code is C++
|
28 |
+
decoder_start_token_id = tokenizer.convert_tokens_to_ids(start_token)
|
29 |
+
|
30 |
+
# Generate the C++ code
|
31 |
+
output = model.generate(
|
32 |
+
input_ids=input_ids,
|
33 |
+
decoder_start_token_id=decoder_start_token_id,
|
34 |
+
max_length=256
|
35 |
+
)
|
36 |
+
|
37 |
+
# Decode and print the generated output
|
38 |
+
generated_code= tokenizer.decode(output[0], skip_special_tokens=True)
|
39 |
+
print(generated_code)
|
40 |
+
```
|
41 |
+
|
42 |
+
### BibTeX
|
43 |
+
|
44 |
+
```bibtex
|
45 |
+
@inproceedings{coderosetta:neurips:2024,
|
46 |
+
title = {CodeRosetta: Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming},
|
47 |
+
author = {TehraniJamsaz, Ali and Bhattacharjee, Arijit and Chen, Le and Ahmed, Nesreen K and Yazdanbakhsh, Amir and Jannesari, Ali},
|
48 |
+
booktitle = {NeurIPS},
|
49 |
+
year = {2024},
|
50 |
+
}
|