Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- lmms-lab/LLaVA-Video-7B-Qwen2
|
5 |
+
---
|
6 |
+
|
7 |
+
# LLaVA-Video-7B-Qwen2-UnifiedReward-DPO
|
8 |
+
|
9 |
+
## Model Summary
|
10 |
+
|
11 |
+
This model is trained on LLaVA-Video-7B-Qwen2 based on DPO preference data constructed by our [UnifiedReward-7B](https://huggingface.co/CodeGoat24/UnifiedReward-7b) for enhanced video understanding ability.
|
12 |
+
|
13 |
+
For further details, please refer to the following resources:
|
14 |
+
- 📰 Paper:
|
15 |
+
- 🪐 Project Page: https://codegoat24.github.io/UnifiedReward/
|
16 |
+
- 🤗 Model Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-models-67c3008148c3a380d15ac63a
|
17 |
+
- 🤗 Dataset Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-training-data-67c300d4fd5eff00fa7f1ede
|
18 |
+
- 👋 Point of Contact: [Yibin Wang](https://codegoat24.github.io)
|
19 |
+
|
20 |
+
|
21 |
+
### Quick Start
|
22 |
+
|
23 |
+
~~~python
|
24 |
+
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
|
25 |
+
from llava.model.builder import load_pretrained_model
|
26 |
+
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
27 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
28 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
29 |
+
from PIL import Image
|
30 |
+
import requests
|
31 |
+
import copy
|
32 |
+
import torch
|
33 |
+
import sys
|
34 |
+
import warnings
|
35 |
+
from decord import VideoReader, cpu
|
36 |
+
import numpy as np
|
37 |
+
warnings.filterwarnings("ignore")
|
38 |
+
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
|
39 |
+
if max_frames_num == 0:
|
40 |
+
return np.zeros((1, 336, 336, 3))
|
41 |
+
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
|
42 |
+
total_frame_num = len(vr)
|
43 |
+
video_time = total_frame_num / vr.get_avg_fps()
|
44 |
+
fps = round(vr.get_avg_fps()/fps)
|
45 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
46 |
+
frame_time = [i/fps for i in frame_idx]
|
47 |
+
if len(frame_idx) > max_frames_num or force_sample:
|
48 |
+
sample_fps = max_frames_num
|
49 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
50 |
+
frame_idx = uniform_sampled_frames.tolist()
|
51 |
+
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
52 |
+
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
53 |
+
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
54 |
+
# import pdb;pdb.set_trace()
|
55 |
+
return spare_frames,frame_time,video_time
|
56 |
+
pretrained = "CodeGoat24/LLaVA-Video-7B-Qwen2-UnifiedReward-DPO"
|
57 |
+
model_name = "llava_qwen"
|
58 |
+
device = "cuda"
|
59 |
+
device_map = "auto"
|
60 |
+
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
|
61 |
+
model.eval()
|
62 |
+
video_path = "XXXX"
|
63 |
+
max_frames_num = 64
|
64 |
+
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
|
65 |
+
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().half()
|
66 |
+
video = [video]
|
67 |
+
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
|
68 |
+
question = DEFAULT_IMAGE_TOKEN + "\nPlease describe this video in detail."
|
69 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
70 |
+
conv.append_message(conv.roles[0], question)
|
71 |
+
conv.append_message(conv.roles[1], None)
|
72 |
+
prompt_question = conv.get_prompt()
|
73 |
+
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
74 |
+
cont = model.generate(
|
75 |
+
input_ids,
|
76 |
+
images=video,
|
77 |
+
modalities= ["video"],
|
78 |
+
do_sample=False,
|
79 |
+
temperature=0,
|
80 |
+
max_new_tokens=4096,
|
81 |
+
)
|
82 |
+
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
|
83 |
+
print(text_outputs)
|
84 |
+
~~~
|
85 |
+
|
86 |
+
|
87 |
+
## Citation
|
88 |
+
|
89 |
+
```
|
90 |
+
|
91 |
+
```
|