Temporarily remove README
Browse files
README.md
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
# AnimagineXL-v3-openvino
|
2 |
-
|
3 |
-
This is an *unofficial* [OpenVINO](https://github.com/openvinotoolkit/openvino) variant of [cagliostrolab/animagine-xl-3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0).
|
4 |
-
|
5 |
-
The repo is provided for convenience of running the Animagine XL v3 model on Intel CPU/GPU, as loading & converting a SDXL model to openvino can be pretty slow (dozens of minutes).
|
6 |
-
|
7 |
-
Table of contents:
|
8 |
-
- [Usage](#usage)
|
9 |
-
- [How the conversion was done](#how-the-conversion-was-done)
|
10 |
-
- [Appendix](#appendix)
|
11 |
-
|
12 |
-
|
13 |
-
## Usage
|
14 |
-
|
15 |
-
Take CPU for example:
|
16 |
-
|
17 |
-
```python
|
18 |
-
from optimum.intel.openvino import OVStableDiffusionXLPipeline
|
19 |
-
from diffusers import (
|
20 |
-
EulerAncestralDiscreteScheduler,
|
21 |
-
DPMSolverMultistepScheduler
|
22 |
-
)
|
23 |
-
|
24 |
-
model_id = "CodeChris/AnimagineXL-v3-openvino"
|
25 |
-
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_model)
|
26 |
-
# Fix output image size & batch_size for faster speed
|
27 |
-
img_w, img_h = 832, 1216 # Example
|
28 |
-
pipe.reshape(width=img_w, height=img_h,
|
29 |
-
batch_size=1, num_images_per_prompt=1)
|
30 |
-
|
31 |
-
## Change scheduler
|
32 |
-
# AnimagineXL recommand Euler A:
|
33 |
-
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
34 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
35 |
-
pipe.scheduler.config,
|
36 |
-
use_karras_sigmas=True,
|
37 |
-
algorithm_type="dpmsolver++"
|
38 |
-
) # I prefer DPM++ 2M Karras
|
39 |
-
# Turn off the filter
|
40 |
-
pipe.safety_checker = None
|
41 |
-
|
42 |
-
# If run on a GPU, you need:
|
43 |
-
# pipe.to('cuda')
|
44 |
-
```
|
45 |
-
|
46 |
-
After the pipe is prepared, a txt2img task can be executed as below:
|
47 |
-
```python
|
48 |
-
prompt = "1girl, dress, day, masterpiece, best quality"
|
49 |
-
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name"
|
50 |
-
|
51 |
-
images = pipe(
|
52 |
-
prompt,
|
53 |
-
negative_prompt,
|
54 |
-
# If reshaped, image size must equal the reshaped size
|
55 |
-
width=img_w, height=img_h,
|
56 |
-
guidance_scale=7,
|
57 |
-
num_inference_steps=20
|
58 |
-
)
|
59 |
-
img = images[0]
|
60 |
-
img.save('sample.png')
|
61 |
-
```
|
62 |
-
|
63 |
-
For convenience, here is the recommended image sizes from the official AnimagineXL doc:
|
64 |
-
|
65 |
-
```
|
66 |
-
# Or their transpose
|
67 |
-
896 x 1152
|
68 |
-
832 x 1216
|
69 |
-
768 x 1344
|
70 |
-
640 x 1536
|
71 |
-
1024 x 1024
|
72 |
-
```
|
73 |
-
|
74 |
-
## How the conversion was done
|
75 |
-
|
76 |
-
First, install optimum:
|
77 |
-
|
78 |
-
```powershell
|
79 |
-
pip install --upgrade-strategy eager optimum[openvino,nncf]
|
80 |
-
```
|
81 |
-
|
82 |
-
Then, the repo is converted using the following command:
|
83 |
-
|
84 |
-
```powershell
|
85 |
-
optimum-cli export openvino --model 'cagliostrolab/animagine-xl-3.0' 'models/openvino/AnimagineXL-v3' --task 'stable-diffusion-xl'
|
86 |
-
```
|
87 |
-
|
88 |
-
## Appendix
|
89 |
-
|
90 |
-
Push large files:
|
91 |
-
|
92 |
-
```
|
93 |
-
git lfs install
|
94 |
-
huggingface-cli lfs-enable-largefiles .
|
95 |
-
```
|
96 |
-
|
97 |
-
Other notes:
|
98 |
-
|
99 |
-
* The conversion was done using `optimum==1.16.1` and `openvino==2023.2.0`.
|
100 |
-
* You may query `optimum-cli export openvino --help` for more usage details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ReadMe.md
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
# AnimagineXL-v3-openvino
|
2 |
-
|
3 |
-
This is an *unofficial* [OpenVINO](https://github.com/openvinotoolkit/openvino) variant of [cagliostrolab/animagine-xl-3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0).
|
4 |
-
|
5 |
-
The repo is provided for convenience of running the Animagine XL v3 model on Intel CPU/GPU, as loading & converting a SDXL model to openvino can be pretty slow (dozens of minutes).
|
6 |
-
|
7 |
-
Table of contents:
|
8 |
-
- [Usage](#usage)
|
9 |
-
- [How the conversion was done](#how-the-conversion-was-done)
|
10 |
-
- [Appendix](#appendix)
|
11 |
-
|
12 |
-
|
13 |
-
## Usage
|
14 |
-
|
15 |
-
Take CPU for example:
|
16 |
-
|
17 |
-
```python
|
18 |
-
from optimum.intel.openvino import OVStableDiffusionXLPipeline
|
19 |
-
from diffusers import (
|
20 |
-
EulerAncestralDiscreteScheduler,
|
21 |
-
DPMSolverMultistepScheduler
|
22 |
-
)
|
23 |
-
|
24 |
-
model_id = "CodeChris/AnimagineXL-v3-openvino"
|
25 |
-
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_model)
|
26 |
-
# Fix output image size & batch_size for faster speed
|
27 |
-
img_w, img_h = 832, 1216 # Example
|
28 |
-
pipe.reshape(width=img_w, height=img_h,
|
29 |
-
batch_size=1, num_images_per_prompt=1)
|
30 |
-
|
31 |
-
## Change scheduler
|
32 |
-
# AnimagineXL recommand Euler A:
|
33 |
-
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
34 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
35 |
-
pipe.scheduler.config,
|
36 |
-
use_karras_sigmas=True,
|
37 |
-
algorithm_type="dpmsolver++"
|
38 |
-
) # I prefer DPM++ 2M Karras
|
39 |
-
# Turn off the filter
|
40 |
-
pipe.safety_checker = None
|
41 |
-
|
42 |
-
# If run on a GPU, you need:
|
43 |
-
# pipe.to('cuda')
|
44 |
-
```
|
45 |
-
|
46 |
-
After the pipe is prepared, a txt2img task can be executed as below:
|
47 |
-
```python
|
48 |
-
prompt = "1girl, dress, day, masterpiece, best quality"
|
49 |
-
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name"
|
50 |
-
|
51 |
-
images = pipe(
|
52 |
-
prompt,
|
53 |
-
negative_prompt,
|
54 |
-
# If reshaped, image size must equal the reshaped size
|
55 |
-
width=img_w, height=img_h,
|
56 |
-
guidance_scale=7,
|
57 |
-
num_inference_steps=20
|
58 |
-
)
|
59 |
-
img = images[0]
|
60 |
-
img.save('sample.png')
|
61 |
-
```
|
62 |
-
|
63 |
-
For convenience, here is the recommended image sizes from the official AnimagineXL doc:
|
64 |
-
|
65 |
-
```
|
66 |
-
# Or their transpose
|
67 |
-
896 x 1152
|
68 |
-
832 x 1216
|
69 |
-
768 x 1344
|
70 |
-
640 x 1536
|
71 |
-
1024 x 1024
|
72 |
-
```
|
73 |
-
|
74 |
-
## How the conversion was done
|
75 |
-
|
76 |
-
First, install optimum:
|
77 |
-
|
78 |
-
```powershell
|
79 |
-
pip install --upgrade-strategy eager optimum[openvino,nncf]
|
80 |
-
```
|
81 |
-
|
82 |
-
Then, the repo is converted using the following command:
|
83 |
-
|
84 |
-
```powershell
|
85 |
-
optimum-cli export openvino --model 'cagliostrolab/animagine-xl-3.0' 'models/openvino/AnimagineXL-v3' --task 'stable-diffusion-xl'
|
86 |
-
```
|
87 |
-
|
88 |
-
## Appendix
|
89 |
-
|
90 |
-
Push large files:
|
91 |
-
|
92 |
-
```
|
93 |
-
git lfs install
|
94 |
-
huggingface-cli lfs-enable-largefiles .
|
95 |
-
```
|
96 |
-
|
97 |
-
Other notes:
|
98 |
-
|
99 |
-
* The conversion was done using `optimum==1.16.1` and `openvino==2023.2.0`.
|
100 |
-
* You may query `optimum-cli export openvino --help` for more usage details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|