CocoRoF commited on
Commit
5c1b37a
·
verified ·
1 Parent(s): 1b3ac73

Upload content from result__CocoRoF__POLAR-Qwen3-0.6b-linq-gist

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:500000
8
+ - loss:CachedGISTEmbedLoss
9
+ base_model: Qwen/Qwen3-Embedding-0.6B
10
+ widget:
11
+ - source_sentence: scramble z to retrieve negative samples, i.e. z values that should
12
+ not be predicted by the model.
13
+ sentences:
14
+ - "def get_neg_z(self, z, cur_device):\n\n if self.opt.sampling_method ==\
15
+ \ 0:\n \"\"\"carefully selecting negative samples, such that they never\n\
16
+ \ include positive samples; done individually for every time-step -->\n\
17
+ \ very slow.\"\"\"\n offset = 1\n # generate\
18
+ \ uncorrelated negative samples by using an individual random\n # offset\
19
+ \ for every index\n rand_neg_idx = torch.arange(z.size(0), device=cur_device)\n\
20
+ \n rand_offset = (\n torch.multinomial(\n \
21
+ \ torch.ones(z.size(0) - offset),\n self.neg_samples\
22
+ \ * z.size(0),\n replacement=True,\n )\n \
23
+ \ + offset\n )\n rand_offset = rand_offset.reshape(self.neg_samples,\
24
+ \ -1).to(cur_device)\n\n z_neg = torch.stack(\n [\n\
25
+ \ torch.index_select(\n z, 0, (rand_neg_idx\
26
+ \ + rand_offset[i]) % z.size(0)\n )\n for\
27
+ \ i in range(self.neg_samples)\n ],\n 2,\n \
28
+ \ )\n elif self.opt.sampling_method == 1:\n \"\"\"randomly\
29
+ \ selecting from all z values.\n\n can cause positive samples to be\
30
+ \ selected as negative\n samples as well (but probability is <0.1%\
31
+ \ in our\n experiments) done once for all time-steps, much faster.\n\
32
+ \ \"\"\"\n z = self.broadcast_batch_length(z)\n \
33
+ \ z_neg = torch.stack(\n [\n torch.index_select(\n\
34
+ \ z, 0, torch.randperm(z.size(0), device=cur_device)\n\
35
+ \ )\n for i in range(self.neg_samples)\n\
36
+ \ ],\n 2,\n )\n rand_neg_idx\
37
+ \ = None\n rand_offset = None\n\n elif self.opt.sampling_method\
38
+ \ == 2:\n \"\"\"randomly selecting from z values within the same sequence.\n\
39
+ \n can cause positive samples to be selected as negative\n \
40
+ \ samples as well done once for all time-steps, much faster.\n \"\
41
+ \"\"\n z_neg = []\n channel = z.size(-1)\n batch_dim\
42
+ \ = z.size(0)\n seq_len = z.size(1)\n\n for _ in range(self.neg_samples):\n\
43
+ \ rand_perm_index = torch.randperm(\n batch_dim\
44
+ \ * seq_len, device=cur_device\n ).remainder_(seq_len)\n \
45
+ \ rand_perm_index = rand_perm_index.reshape(batch_dim, seq_len)\n \
46
+ \ batch_index_offset = (\n torch.arange(0, batch_dim,\
47
+ \ device=cur_device) * seq_len\n )\n rand_perm_index\
48
+ \ += batch_index_offset[:, None]\n\n z_neg.append(\n \
49
+ \ z.reshape(-1, channel)[rand_perm_index.view(-1)].reshape(\n \
50
+ \ batch_dim, seq_len, channel\n )\n \
51
+ \ )\n\n z_neg = torch.stack(z_neg, 3)\n\n rand_neg_idx\
52
+ \ = None\n rand_offset = None\n\n else:\n raise Exception(\"\
53
+ Invalid sampling_method option\")\n\n return z_neg, rand_neg_idx, rand_offset"
54
+ - 마우스 전지방 3T3-L1세포주에 파이토케미칼을 조건에 따라 24시간 처리한 후 cell viability assay를 수행하였다.
55
+ - "def _sample_neg(self, assign_result, num_expected):\n neg_inds = torch.nonzero(assign_result.gt_inds\
56
+ \ == 0)\n if neg_inds.numel() != 0:\n neg_inds = neg_inds.squeeze(1)\n\
57
+ \ if len(neg_inds) <= num_expected:\n return neg_inds\n \
58
+ \ elif self.neg_balance_thr <= 0:\n # uniform sampling among all\
59
+ \ negative samples\n return random_choice(neg_inds, num_expected)\n\
60
+ \ else:\n max_overlaps = assign_result.max_overlaps.cpu().numpy()\n\
61
+ \ # balance sampling for negative samples\n neg_set = set(neg_inds.cpu().numpy())\n\
62
+ \ easy_set = set(\n np.where(\n np.logical_and(max_overlaps\
63
+ \ >= 0,\n max_overlaps < self.neg_balance_thr))[0])\n\
64
+ \ hard_set = set(np.where(max_overlaps >= self.neg_balance_thr)[0])\n\
65
+ \ easy_neg_inds = list(easy_set & neg_set)\n hard_neg_inds\
66
+ \ = list(hard_set & neg_set)\n\n num_expected_hard = int(num_expected\
67
+ \ * self.neg_hard_fraction)\n if len(hard_neg_inds) > num_expected_hard:\n\
68
+ \ sampled_hard_inds = random_choice(hard_neg_inds,\n \
69
+ \ num_expected_hard)\n else:\n\
70
+ \ sampled_hard_inds = np.array(hard_neg_inds, dtype=np.int)\n \
71
+ \ num_expected_easy = num_expected - len(sampled_hard_inds)\n \
72
+ \ if len(easy_neg_inds) > num_expected_easy:\n sampled_easy_inds\
73
+ \ = random_choice(easy_neg_inds,\n \
74
+ \ num_expected_easy)\n else:\n sampled_easy_inds\
75
+ \ = np.array(easy_neg_inds, dtype=np.int)\n sampled_inds = np.concatenate((sampled_easy_inds,\n\
76
+ \ sampled_hard_inds))\n if\
77
+ \ len(sampled_inds) < num_expected:\n num_extra = num_expected\
78
+ \ - len(sampled_inds)\n extra_inds = np.array(list(neg_set - set(sampled_inds)))\n\
79
+ \ if len(extra_inds) > num_extra:\n extra_inds\
80
+ \ = random_choice(extra_inds, num_extra)\n sampled_inds = np.concatenate((sampled_inds,\
81
+ \ extra_inds))\n sampled_inds = torch.from_numpy(sampled_inds).long().to(\n\
82
+ \ assign_result.gt_inds.device)\n return sampled_inds"
83
+ - source_sentence: if you wanted to know the mean and CI of m samples taken at a value
84
+ x_val
85
+ sentences:
86
+ - "def predictSamples(m, x_val, x, y):\n n = len(x)\n x_mean = np.mean(x)\n yhat,\
87
+ \ upper, lower, stats = regression_with_CI(x, y)\n # mean at x_val:\n y_val\
88
+ \ = stats['a'] + stats['b'] * x_val\n # standard error of measurement at x_val\
89
+ \ for m samples:\n s_m = math.sqrt( stats['MS']*(1./m + 1./n + (x_val - x_mean)**2\
90
+ \ / \\\n stats['x_SS']) )\n t, stats = studentsT(x,\
91
+ \ y, stats)\n critval = returnCritValue(n-2)\n print('Mean for %i samples at\
92
+ \ %.3f: %.3f +/- %.3f' \n %(m, x_val, y_val, critval*s_m))\n return"
93
+ - "async def resize_window(self, options):\n self.log_test(options['desc']\
94
+ \ if 'desc' in options else\n \"Resizing '\" + options['selector']\
95
+ \ + \"' window.\")\n\n # await self.page.screenshot({'path': 'preresize.png'})\n\
96
+ \n win_hndl = await self.get_handle(options['selector'])\n pre_resize_bbox\
97
+ \ = await win_hndl.boundingBox()\n\n edge_hndl = await self.get_handle(options['selector']\
98
+ \ + ' div.rsz-' + options['side'])\n edge_bbox = await edge_hndl.boundingBox()\n\
99
+ \n new_x = edge_bbox['x'] + \\\n resize_dirs[options['side']][0]\
100
+ \ * options['distance']\n new_y = edge_bbox['y'] + \\\n resize_dirs[options['side']][1]\
101
+ \ * options['distance']\n\n await edge_hndl.hover()\n await self.page.mouse.down()\n\
102
+ \ await self.page.mouse.move(new_x, new_y)\n await self.page.mouse.up()\n\
103
+ \n post_resize_bbox = await win_hndl.boundingBox()\n dw = post_resize_bbox['width']\
104
+ \ - pre_resize_bbox['width']\n dh = post_resize_bbox['height'] - pre_resize_bbox['height']\n\
105
+ \n resized = ((dw != 0) or (dh != 0))\n if options['expectChange']:\n\
106
+ \ self.assertIsNot(resized, False,\n \"\
107
+ The '\" + options['selector'] + \"' element was NOT resized and should have been.\"\
108
+ )\n else:\n self.assertIsNot(resized, True,\n \
109
+ \ \"The '\" + options['selector'] + \"' element was resized and\
110
+ \ should NOT have been.\")\n\n # await self.page.screenshot({'path': 'postresize.png'})"
111
+ - "def _batch_stats(self, x):\n mu = torch.mean(x, dim=0, keepdim=True)\n\
112
+ \ var = torch.var(x, dim=0, keepdim=True)\n return mu, var"
113
+ - source_sentence: 백악관은 도널드 트럼프 미국 대통령이 누구와 통화를 했다고 했어?
114
+ sentences:
115
+ - "def __str__(self):\n return '\\n'.join([self.header, self.sequence, self.header2,\
116
+ \ \n array('b', [x + self.qbase for x in self.quality]).tostring()])"
117
+ - ' 백악관은 16일(현지시간) 미-중 정상이 전날 전화통화를 통해 최근 한반도 상황을 놓고 논의했다며 이같이 전했다.'
118
+ - 도널드 트럼프 미국 대통령
119
+ - source_sentence: Return an example step handler for the given gym environemtn name,
120
+ that uses the given config file.
121
+ sentences:
122
+ - "def stub_config():\n defaults = {\n \"activate_recruiter_on_start\"\
123
+ : True,\n \"ad_group\": \"Test ad group\",\n \"approve_requirement\"\
124
+ : 95,\n \"assign_qualifications\": True,\n \"auto_recruit\": True,\n\
125
+ \ \"aws_access_key_id\": \"fake aws key\",\n \"aws_secret_access_key\"\
126
+ : \"fake aws secret\",\n \"aws_region\": \"us-east-1\",\n \"base_payment\"\
127
+ : 0.01,\n \"base_port\": 5000,\n \"browser_exclude_rule\": \"MSIE,\
128
+ \ mobile, tablet\",\n \"clock_on\": False,\n \"contact_email_on_error\"\
129
+ : \"[email protected]\",\n \"dallinger_email_address\": \"[email protected]\"\
130
+ ,\n \"database_size\": \"standard-0\",\n \"disable_when_duration_exceeded\"\
131
+ : True,\n \"enable_global_experiment_registry\": False,\n \"redis_size\"\
132
+ : \"premium-0\",\n \"dashboard_user\": \"admin\",\n \"database_url\"\
133
+ : \"postgresql://postgres@localhost/dallinger\",\n \"description\": \"\
134
+ fake HIT description\",\n \"duration\": 1.0,\n \"dyno_type\": \"\
135
+ free\",\n \"heroku_app_id_root\": \"fake-customid\",\n \"heroku_auth_token\"\
136
+ : \"heroku secret\",\n \"heroku_python_version\": \"3.9.2\",\n \"\
137
+ heroku_team\": \"\",\n \"host\": \"0.0.0.0\",\n \"id\": \"TEST_EXPERIMENT_UID\"\
138
+ , # This is a significant value; change with caution.\n \"keywords\":\
139
+ \ \"kw1, kw2, kw3\",\n \"lifetime\": 1,\n \"lock_table_when_creating_participant\"\
140
+ : True,\n \"logfile\": \"-\",\n \"loglevel\": 0,\n \"mode\"\
141
+ : \"debug\",\n \"num_dynos_web\": 1,\n \"num_dynos_worker\": 1,\n\
142
+ \ \"organization_name\": \"Monsters University\",\n \"sentry\":\
143
+ \ True,\n \"smtp_host\": \"smtp.fakehost.com:587\",\n \"smtp_username\"\
144
+ : \"fake email username\",\n \"smtp_password\": \"fake email password\"\
145
+ ,\n \"threads\": \"1\",\n \"title\": \"fake experiment title\",\n\
146
+ \ \"us_only\": True,\n \"webdriver_type\": \"chrome_headless\",\n\
147
+ \ \"whimsical\": True,\n \"replay\": False,\n \"worker_multiplier\"\
148
+ : 1.5,\n }\n from dallinger.config import Configuration, default_keys\n\n\
149
+ \ config = Configuration()\n for key in default_keys:\n config.register(*key)\n\
150
+ \ config.extend(defaults.copy())\n # Patch load() so we don't update any\
151
+ \ key/value pairs from actual files:\n config.load = mock.Mock(side_effect=lambda:\
152
+ \ setattr(config, \"ready\", True))\n config.ready = True\n\n return config"
153
+ - 상부 챔버는 심방(또는 심실)이라고 불리며, 하부 챔버는 심실이라고 불립니다. 두 개의 심방은 심장으로 들어오는 혈액을 받는 챔버 역할을 하며,
154
+ 더 근육질인 심실은 혈액을 심장에서 내보냅니다.
155
+ - "def get_step_handler_for_gym_env(gym_env_name: str, cfg: Configuration) -> StepRewardDoneHandler:\r\
156
+ \n\r\n if gym_env_name == 'Acrobot-v1':\r\n handler = AcrobotStepHandler(cfg)\r\
157
+ \n elif gym_env_name == 'CartPole-v1':\r\n handler = CartPoleStepHandler(cfg)\r\
158
+ \n elif gym_env_name == 'MountainCarContinuous-v0':\r\n handler = ContinuousMountainCarStepHandler(cfg)\r\
159
+ \n elif gym_env_name == 'MountainCar-v0':\r\n handler = MountainCarStepHandler(cfg)\r\
160
+ \n elif gym_env_name == 'Pendulum-v0':\r\n handler = PendulumStepHandler(cfg)\r\
161
+ \n else:\r\n raise NotImplementedError(f'No support for this gym env:\
162
+ \ {gym_env_name}')\r\n\r\n return handler"
163
+ - source_sentence: create list of spiders that obeys the visible projects list, through
164
+ use of the spider selection menu
165
+ sentences:
166
+ - "def create_spiders_list():\n spiders_lst = [obj for obj in globals().values()\
167
+ \ if\n inspect.isclass(obj) and str(obj).split('.')[2] == 'spiders'\
168
+ \ and 'BaseSpider' not in str(obj)]\n visible_projects = find_visible_projects()\n\
169
+ \ spiders_dict = {i.split('.')[0]: [obj for obj in spiders_lst if i.split('.')[0]\
170
+ \ in str(obj)] for i in\n os.listdir('HousingPriceScraper/HousingPriceScraper/spiders/SpiderGroups')[:-1]\
171
+ \ if i.split('.')[0] in visible_projects}\n if len(list(spiders_dict.keys()))\
172
+ \ > 0:\n spiders_lst = select_spiders(spiders_dict)\n else:\n \
173
+ \ print('There are no visible projects, got to set_visible_projects to set defaults')\n\
174
+ \ return False\n return spiders_lst"
175
+ - "def game(self, game_id=None, secret=None):\n if game_id is not None:\n\
176
+ \ self.game_id = game_id\n\n if secret is not None:\n \
177
+ \ self.secret = secret\n\n return self.game_id, self.secret"
178
+ - "def instantiate_pipelines(settings, simulator_settings):\n pipelines = []\n\
179
+ \ # lock to manage race parallel processes race conditions \n lock = Lock()\n\
180
+ \n logger.info(\"\\nVALIDATING PIPELINES\\n\")\n for p_idx, pipeline_settings\
181
+ \ in enumerate(settings.runs):\n\n # turn a pipeline off by specifying\
182
+ \ num_runs as 0\n num_runs = pipeline_settings.get(\"num_runs\", 0)\n\n\
183
+ \ # start_idx determines the first dataset name's starting idx\n \
184
+ \ start_idx = pipeline_settings.get(\"start_idx\", 0)\n\n if num_runs:\n\
185
+ \ logger.info(\"Validating run: {}\\n\".format(p_idx))\n else:\n\
186
+ \ logger.info(\"Skipping run: {}\\n\".format(p_idx))\n \n\
187
+ \ for idx in range(start_idx, start_idx + num_runs): \n \
188
+ \ logger.info(\"Pipeline sub index: {}\\n\".format(idx))\n #\
189
+ \ class factory and instantiate pipeline object\n Pipeline = pipeline_factory(pipeline_settings[\"\
190
+ pipeline_name\"])\n p = Pipeline(pipeline_settings, idx, simulator_settings)\n\
191
+ \ \n # give each pipeline an idependent logger\n \
192
+ \ log_name = \"dSim_{}\".format(p.pipeline_settings[\"dataset_name\"])\n \
193
+ \ log_path = os.path.join(p.pipeline_settings[\"outdir\"],\n \
194
+ \ p.pipeline_settings[\"dataset_name\"]+'.log')\n\
195
+ \ fh = logging.FileHandler(log_path, mode='w')\n fh.setLevel(logging.DEBUG)\n\
196
+ \ format = \"%(asctime)-6s: %(name)s - %(levelname)s - %(message)s\"\
197
+ \n fmt = logging.Formatter(format)\n fh.setFormatter(fmt)\n\
198
+ \ local_logger = logging.getLogger(log_name)\n local_logger.addHandler(fh)\n\
199
+ \ logger.info(\"Init local logging: {}\".format(log_path))\n \
200
+ \ p.logger = local_logger\n\n # pipeline/ dataset directory\n\
201
+ \ p.pipeline_settings[\"lock\"] = lock\n\n # validate all\
202
+ \ submodules for each pipeline is ready (use local logger) \n p.instantiate_modules()\n\
203
+ \n # append to list of instantiated pipelines\n pipelines.append(p)\n\
204
+ \ return pipelines"
205
+ datasets:
206
+ - CocoRoF/massive_triplet_v3
207
+ pipeline_tag: sentence-similarity
208
+ library_name: sentence-transformers
209
+ ---
210
+
211
+ # SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
212
+
213
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
214
+
215
+ ## Model Details
216
+
217
+ ### Model Description
218
+ - **Model Type:** Sentence Transformer
219
+ - **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision 744169034862c8eec56628663995004342e4e449 -->
220
+ - **Maximum Sequence Length:** 32768 tokens
221
+ - **Output Dimensionality:** 1024 dimensions
222
+ - **Similarity Function:** Cosine Similarity
223
+ - **Training Dataset:**
224
+ - [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3)
225
+ <!-- - **Language:** Unknown -->
226
+ <!-- - **License:** Unknown -->
227
+
228
+ ### Model Sources
229
+
230
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
231
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
232
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
233
+
234
+ ### Full Model Architecture
235
+
236
+ ```
237
+ SentenceTransformer(
238
+ (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen3Model
239
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
240
+ (2): Normalize()
241
+ )
242
+ ```
243
+
244
+ ## Usage
245
+
246
+ ### Direct Usage (Sentence Transformers)
247
+
248
+ First install the Sentence Transformers library:
249
+
250
+ ```bash
251
+ pip install -U sentence-transformers
252
+ ```
253
+
254
+ Then you can load this model and run inference.
255
+ ```python
256
+ from sentence_transformers import SentenceTransformer
257
+
258
+ # Download from the 🤗 Hub
259
+ model = SentenceTransformer("CocoRoF/POLAR-Qwen3-0.6b-linq-gist")
260
+ # Run inference
261
+ sentences = [
262
+ 'create list of spiders that obeys the visible projects list, through use of the spider selection menu',
263
+ "def create_spiders_list():\n spiders_lst = [obj for obj in globals().values() if\n inspect.isclass(obj) and str(obj).split('.')[2] == 'spiders' and 'BaseSpider' not in str(obj)]\n visible_projects = find_visible_projects()\n spiders_dict = {i.split('.')[0]: [obj for obj in spiders_lst if i.split('.')[0] in str(obj)] for i in\n os.listdir('HousingPriceScraper/HousingPriceScraper/spiders/SpiderGroups')[:-1] if i.split('.')[0] in visible_projects}\n if len(list(spiders_dict.keys())) > 0:\n spiders_lst = select_spiders(spiders_dict)\n else:\n print('There are no visible projects, got to set_visible_projects to set defaults')\n return False\n return spiders_lst",
264
+ 'def instantiate_pipelines(settings, simulator_settings):\n pipelines = []\n # lock to manage race parallel processes race conditions \n lock = Lock()\n\n logger.info("\\nVALIDATING PIPELINES\\n")\n for p_idx, pipeline_settings in enumerate(settings.runs):\n\n # turn a pipeline off by specifying num_runs as 0\n num_runs = pipeline_settings.get("num_runs", 0)\n\n # start_idx determines the first dataset name\'s starting idx\n start_idx = pipeline_settings.get("start_idx", 0)\n\n if num_runs:\n logger.info("Validating run: {}\\n".format(p_idx))\n else:\n logger.info("Skipping run: {}\\n".format(p_idx))\n \n for idx in range(start_idx, start_idx + num_runs): \n logger.info("Pipeline sub index: {}\\n".format(idx))\n # class factory and instantiate pipeline object\n Pipeline = pipeline_factory(pipeline_settings["pipeline_name"])\n p = Pipeline(pipeline_settings, idx, simulator_settings)\n \n # give each pipeline an idependent logger\n log_name = "dSim_{}".format(p.pipeline_settings["dataset_name"])\n log_path = os.path.join(p.pipeline_settings["outdir"],\n p.pipeline_settings["dataset_name"]+\'.log\')\n fh = logging.FileHandler(log_path, mode=\'w\')\n fh.setLevel(logging.DEBUG)\n format = "%(asctime)-6s: %(name)s - %(levelname)s - %(message)s"\n fmt = logging.Formatter(format)\n fh.setFormatter(fmt)\n local_logger = logging.getLogger(log_name)\n local_logger.addHandler(fh)\n logger.info("Init local logging: {}".format(log_path))\n p.logger = local_logger\n\n # pipeline/ dataset directory\n p.pipeline_settings["lock"] = lock\n\n # validate all submodules for each pipeline is ready (use local logger) \n p.instantiate_modules()\n\n # append to list of instantiated pipelines\n pipelines.append(p)\n return pipelines',
265
+ ]
266
+ embeddings = model.encode(sentences)
267
+ print(embeddings.shape)
268
+ # [3, 1024]
269
+
270
+ # Get the similarity scores for the embeddings
271
+ similarities = model.similarity(embeddings, embeddings)
272
+ print(similarities.shape)
273
+ # [3, 3]
274
+ ```
275
+
276
+ <!--
277
+ ### Direct Usage (Transformers)
278
+
279
+ <details><summary>Click to see the direct usage in Transformers</summary>
280
+
281
+ </details>
282
+ -->
283
+
284
+ <!--
285
+ ### Downstream Usage (Sentence Transformers)
286
+
287
+ You can finetune this model on your own dataset.
288
+
289
+ <details><summary>Click to expand</summary>
290
+
291
+ </details>
292
+ -->
293
+
294
+ <!--
295
+ ### Out-of-Scope Use
296
+
297
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
298
+ -->
299
+
300
+ <!--
301
+ ## Bias, Risks and Limitations
302
+
303
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
304
+ -->
305
+
306
+ <!--
307
+ ### Recommendations
308
+
309
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
310
+ -->
311
+
312
+ ## Training Details
313
+
314
+ ### Training Dataset
315
+
316
+ #### massive_triplet_v3
317
+
318
+ * Dataset: [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3) at [51266de](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3/tree/51266de17705934d628da7d4d9f74cc5f7b0b791)
319
+ * Size: 500,000 training samples
320
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
321
+ * Approximate statistics based on the first 1000 samples:
322
+ | | query | positive | negative |
323
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
324
+ | type | string | string | string |
325
+ | details | <ul><li>min: 6 tokens</li><li>mean: 22.57 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 132.85 tokens</li><li>max: 1160 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 122.89 tokens</li><li>max: 1758 tokens</li></ul> |
326
+ * Samples:
327
+ | query | positive | negative |
328
+ |:-----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
329
+ | <code>방학기간에 소외지역의 청소년을 대상으로 청춘누리 봉사단이 할 수 있는 캠프의 이름은 뭐야</code> | <code>주요 수상기관 교육기부프로그램 개요<br>4. 대학생 동아리 「청춘누리 봉사단」<br>□ 청춘누리축제<br>◦ (참가대상) 전국 유치원, 초·중·고등학생<br>◦ (활동내역) 대학생들이 운영하는 교육기부활동을 청소년들이 직접 체험해봄으로써 학생들이 사고력, 창의력 향상을 도모하고 자신의 꿈을 펼칠 수 있는 장 마련<br>◦ (주요성과) 대학생들의 교육기부에 대한 전반적인 이해를 돕고 교육 기��� 활동의 우수성 홍보<br>□ 청춘누리봉사단과 함께하는 교육기부(쏙쏙캠프, 함성소리)<br>◦ (참가대상) 전국의 초·중학생<br>◦ (활동내역)<br>- 쏙쏙캠프 : 방학을 이용하여 상대적으로 교육기부 혜택이 적은 소외 지역을 방문하여 창의력 체험, 진로체험 등을 제공, 배움의 기회 균등 및 꿈을 찾아주는 활동 전개<br>- 함성소리 : 학기중 토요일마다 수도권에 있는 청소년 대상으로 꿈을 설계하고 지원하는 활동 전개<br>◦ (주요성과) 소외지역 청소년 대상 배움의 기회를 제공하고 대학생들의 봉사활동을 장려하여 많은 청소년 대상 멘토 활동 전개</code> | <code>개도국에 IT나눔을 실천한 청년들과 아름다운 동행<br>□ 미래창조과학부(장관 최문기)와 한국정보화진흥원(원장 장광수)은 12월 18일(수) 오후 2시 10분 과천과학관에서 「2013년도 월드프렌즈 IT봉사단 귀국보고대회」(이하, IT봉사단 귀국보고대회)를 개최하였다.<br>o 정부는 2001년부터 현재까지 전 세계 70여개 개도국에 5,158명의 IT봉사단을 파견한 바 있으며, 「IT봉사단 귀국보고대회」는 매년 개도국에서 활동하고 온 봉사단원들이 서로의 경험을 공유하고 글로벌 역량을 배양하는 ‘소통'과 ‘협력‘의 장(場)으로 운영되고 있다.<br>※ 월드프렌즈(World Frends Korea, WFK) : 우리나라 해외봉사단사업 통합브랜드<br>□ 이번 「IT봉사단 귀국보고대회」에는 30개국에 파견되었던 552명의 봉사단원 중 약 300여명의 봉사단원이 참석했으며, 윤종록 제2차관과 주한 외교사절(인도네시아 대사, 코스타리카 대사, 네팔 대사 등)이 참석해 세계의 오지를 누비고 온 봉사단원들을 격려했다.<br>o 윤종록 제2차관은 IT봉사단원들에게“귀한경험을 활용하여 대한민국의 이름을 빛내는 사람이 되기를 바란다”는 당부와 함께“정부는 여러분과 같은 젊은이들이 세계를 무대로 능력을 마음껏 발휘할 수 있는 글로벌 플랫폼을 구축하는데 노력할 계획”이라고 덧붙였다.</code> |
330
+ | <code>Loads sensor filters from an Excel file. Both new style XLSX and oldstyle XLS formats are supported.</code> | <code>def load_sensor_filters_excel(filename, normalise=False, sheet_names=None):<br><br> sensor_filters = {}<br> with pd.ExcelFile(filename) as excel_file:<br> # default is all sheets<br> if not sheet_names:<br> sheet_names = excel_file.sheet_names<br><br> for sheet in sheet_names:<br> try:<br> dataframe = excel_file.parse(<br> sheet, index_col=0<br> ) # the sheet as a DataFrame<br> # OK, we have the data frame. Let's process it...<br> if not _validate_filter_dataframe(dataframe):<br> continue<br><br> if normalise:<br> dataframe = _normalise_dataframe(dataframe)<br><br> sensor_filters[sheet] = (<br> np.array(dataframe.index),<br> dataframe.values.transpose(),<br> )<br><br> except xlrd.biffh.XLRDError:<br> continue<br> # except xlrd.biffh.XLRDError as xlrd_error:<br> # TODO: log wa...</code> | <code>def convert_csv(fname):<br><br> # Make sure this is an Excel file.<br> if (not is_excel_file(fname)):<br><br> # Not Excel, so no sheets.<br> return []<br><br> # Run soffice in listening mode if it is not already running.<br> run_soffice()<br> <br> # TODO: Make sure soffice is running in listening mode.<br> # <br> <br> # Connect to the local LibreOffice server.<br> context = connect(Socket(HOST, PORT))<br><br> # Load the Excel sheet.<br> component = get_component(fname, context)<br><br> # Iterate on all the sheets in the spreadsheet.<br> controller = component.getCurrentController()<br> sheets = component.getSheets()<br> enumeration = sheets.createEnumeration()<br> r = []<br> pos = 0<br> if sheets.getCount() > 0:<br> while enumeration.hasMoreElements():<br><br> # Move to next sheet.<br> sheet = enumeration.nextElement()<br> name = sheet.getName()<br> if (name.count(" ") > 10):<br> name = name.replace(" ", "")<br> name = fix_file_name(name)<br> ...</code> |
331
+ | <code>Create an additional feature to metadata by counting number of occurrences in data, for a specific element_type</code> | <code>def create_count_features(metadata, element_type, data, grp_feat, res_feat, feature_suffix):<br> feature_name = 'n_'+ element_type + '_modif' + feature_suffix<br> newfeature = (data.groupby([grp_feat])[res_feat]<br> .count()<br> .reset_index()<br> .fillna(0))<br> newfeature.columns = [grp_feat, feature_name]<br> metadata = pd.merge(metadata, newfeature, on=grp_feat, how="outer").fillna(0)<br> return metadata</code> | <code>def test(self):<br> count = Counter()<br> for example in self.testing_set:<br> classification = self.classify(example.attributes)<br><br> if example.CLASS and classification:<br> count['TP'] += 1<br> elif not example.CLASS and classification:<br> count['FP'] += 1<br> elif not example.CLASS and not classification:<br> count['TN'] += 1<br> elif example.CLASS and not classification:<br> count['FN'] += 1<br> return count</code> |
332
+ * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
333
+ ```json
334
+ {'guide': SentenceTransformer(
335
+ (0): Transformer({'max_seq_length': 40960, 'do_lower_case': False}) with Transformer model: Qwen3Model
336
+ (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
337
+ (2): Normalize()
338
+ ), 'temperature': 0.01}
339
+ ```
340
+
341
+ ### Training Hyperparameters
342
+ #### Non-Default Hyperparameters
343
+
344
+ - `overwrite_output_dir`: True
345
+ - `per_device_train_batch_size`: 32
346
+ - `per_device_eval_batch_size`: 32
347
+ - `gradient_accumulation_steps`: 16
348
+ - `learning_rate`: 2e-06
349
+ - `weight_decay`: 0.01
350
+ - `adam_beta2`: 0.99
351
+ - `adam_epsilon`: 1e-07
352
+ - `max_grad_norm`: 0.3
353
+ - `num_train_epochs`: 1.0
354
+ - `warmup_ratio`: 0.1
355
+ - `dataloader_num_workers`: 16
356
+ - `hub_model_id`: CocoRoF/POLAR-Qwen3-0.6b-linq-gist
357
+ - `prompts`: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)
358
+ - `batch_sampler`: no_duplicates
359
+
360
+ #### All Hyperparameters
361
+ <details><summary>Click to expand</summary>
362
+
363
+ - `overwrite_output_dir`: True
364
+ - `do_predict`: False
365
+ - `eval_strategy`: no
366
+ - `prediction_loss_only`: True
367
+ - `per_device_train_batch_size`: 32
368
+ - `per_device_eval_batch_size`: 32
369
+ - `per_gpu_train_batch_size`: None
370
+ - `per_gpu_eval_batch_size`: None
371
+ - `gradient_accumulation_steps`: 16
372
+ - `eval_accumulation_steps`: None
373
+ - `torch_empty_cache_steps`: None
374
+ - `learning_rate`: 2e-06
375
+ - `weight_decay`: 0.01
376
+ - `adam_beta1`: 0.9
377
+ - `adam_beta2`: 0.99
378
+ - `adam_epsilon`: 1e-07
379
+ - `max_grad_norm`: 0.3
380
+ - `num_train_epochs`: 1.0
381
+ - `max_steps`: -1
382
+ - `lr_scheduler_type`: linear
383
+ - `lr_scheduler_kwargs`: {}
384
+ - `warmup_ratio`: 0.1
385
+ - `warmup_steps`: 0
386
+ - `log_level`: passive
387
+ - `log_level_replica`: warning
388
+ - `log_on_each_node`: True
389
+ - `logging_nan_inf_filter`: True
390
+ - `save_safetensors`: True
391
+ - `save_on_each_node`: False
392
+ - `save_only_model`: False
393
+ - `restore_callback_states_from_checkpoint`: False
394
+ - `no_cuda`: False
395
+ - `use_cpu`: False
396
+ - `use_mps_device`: False
397
+ - `seed`: 42
398
+ - `data_seed`: None
399
+ - `jit_mode_eval`: False
400
+ - `use_ipex`: False
401
+ - `bf16`: False
402
+ - `fp16`: False
403
+ - `fp16_opt_level`: O1
404
+ - `half_precision_backend`: auto
405
+ - `bf16_full_eval`: False
406
+ - `fp16_full_eval`: False
407
+ - `tf32`: None
408
+ - `local_rank`: 0
409
+ - `ddp_backend`: None
410
+ - `tpu_num_cores`: None
411
+ - `tpu_metrics_debug`: False
412
+ - `debug`: []
413
+ - `dataloader_drop_last`: True
414
+ - `dataloader_num_workers`: 16
415
+ - `dataloader_prefetch_factor`: None
416
+ - `past_index`: -1
417
+ - `disable_tqdm`: False
418
+ - `remove_unused_columns`: True
419
+ - `label_names`: None
420
+ - `load_best_model_at_end`: False
421
+ - `ignore_data_skip`: False
422
+ - `fsdp`: []
423
+ - `fsdp_min_num_params`: 0
424
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
425
+ - `tp_size`: 0
426
+ - `fsdp_transformer_layer_cls_to_wrap`: None
427
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
428
+ - `deepspeed`: None
429
+ - `label_smoothing_factor`: 0.0
430
+ - `optim`: adamw_torch
431
+ - `optim_args`: None
432
+ - `adafactor`: False
433
+ - `group_by_length`: False
434
+ - `length_column_name`: length
435
+ - `ddp_find_unused_parameters`: None
436
+ - `ddp_bucket_cap_mb`: None
437
+ - `ddp_broadcast_buffers`: False
438
+ - `dataloader_pin_memory`: True
439
+ - `dataloader_persistent_workers`: False
440
+ - `skip_memory_metrics`: True
441
+ - `use_legacy_prediction_loop`: False
442
+ - `push_to_hub`: False
443
+ - `resume_from_checkpoint`: None
444
+ - `hub_model_id`: CocoRoF/POLAR-Qwen3-0.6b-linq-gist
445
+ - `hub_strategy`: every_save
446
+ - `hub_private_repo`: None
447
+ - `hub_always_push`: False
448
+ - `gradient_checkpointing`: False
449
+ - `gradient_checkpointing_kwargs`: None
450
+ - `include_inputs_for_metrics`: False
451
+ - `include_for_metrics`: []
452
+ - `eval_do_concat_batches`: True
453
+ - `fp16_backend`: auto
454
+ - `push_to_hub_model_id`: None
455
+ - `push_to_hub_organization`: None
456
+ - `mp_parameters`:
457
+ - `auto_find_batch_size`: False
458
+ - `full_determinism`: False
459
+ - `torchdynamo`: None
460
+ - `ray_scope`: last
461
+ - `ddp_timeout`: 1800
462
+ - `torch_compile`: False
463
+ - `torch_compile_backend`: None
464
+ - `torch_compile_mode`: None
465
+ - `include_tokens_per_second`: False
466
+ - `include_num_input_tokens_seen`: False
467
+ - `neftune_noise_alpha`: None
468
+ - `optim_target_modules`: None
469
+ - `batch_eval_metrics`: False
470
+ - `eval_on_start`: False
471
+ - `use_liger_kernel`: False
472
+ - `eval_use_gather_object`: False
473
+ - `average_tokens_across_devices`: False
474
+ - `prompts`: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)
475
+ - `batch_sampler`: no_duplicates
476
+ - `multi_dataset_batch_sampler`: proportional
477
+
478
+ </details>
479
+
480
+ ### Training Logs
481
+ <details><summary>Click to expand</summary>
482
+
483
+ | Epoch | Step | Training Loss |
484
+ |:------:|:----:|:-------------:|
485
+ | 0.0082 | 1 | 2.0699 |
486
+ | 0.0164 | 2 | 1.7826 |
487
+ | 0.0246 | 3 | 1.9799 |
488
+ | 0.0328 | 4 | 8.1569 |
489
+ | 0.0410 | 5 | 4.641 |
490
+ | 0.0492 | 6 | 4.847 |
491
+ | 0.0573 | 7 | 8.2247 |
492
+ | 0.0655 | 8 | 8.9525 |
493
+ | 0.0737 | 9 | 4.2975 |
494
+ | 0.0819 | 10 | 6.3088 |
495
+ | 0.0901 | 11 | 5.6983 |
496
+ | 0.0983 | 12 | 4.3867 |
497
+ | 0.1065 | 13 | 6.1817 |
498
+ | 0.1147 | 14 | 6.0226 |
499
+ | 0.1229 | 15 | 15.2869 |
500
+ | 0.1311 | 16 | 11.8965 |
501
+ | 0.1393 | 17 | 9.4219 |
502
+ | 0.1475 | 18 | 5.9216 |
503
+ | 0.1557 | 19 | 6.5436 |
504
+ | 0.1639 | 20 | 5.4599 |
505
+ | 0.1720 | 21 | 4.6468 |
506
+ | 0.1802 | 22 | 4.9366 |
507
+ | 0.1884 | 23 | 4.5267 |
508
+ | 0.1966 | 24 | 4.9044 |
509
+ | 0.2048 | 25 | 4.9682 |
510
+ | 0.2130 | 26 | 4.1537 |
511
+ | 0.2212 | 27 | 4.0729 |
512
+ | 0.2294 | 28 | 3.9093 |
513
+ | 0.2376 | 29 | 3.3863 |
514
+ | 0.2458 | 30 | 3.9228 |
515
+ | 0.2540 | 31 | 2.8689 |
516
+ | 0.2622 | 32 | 3.3243 |
517
+ | 0.2704 | 33 | 2.7494 |
518
+ | 0.2785 | 34 | 3.108 |
519
+ | 0.2867 | 35 | 3.1585 |
520
+ | 0.2949 | 36 | 3.2985 |
521
+ | 0.3031 | 37 | 2.7137 |
522
+ | 0.3113 | 38 | 2.8327 |
523
+ | 0.3195 | 39 | 2.7932 |
524
+ | 0.3277 | 40 | 3.038 |
525
+ | 0.3359 | 41 | 2.769 |
526
+ | 0.3441 | 42 | 2.7036 |
527
+ | 0.3523 | 43 | 3.1873 |
528
+ | 0.3605 | 44 | 2.5984 |
529
+ | 0.3687 | 45 | 2.6836 |
530
+ | 0.3769 | 46 | 3.0616 |
531
+ | 0.3850 | 47 | 2.87 |
532
+ | 0.3932 | 48 | 2.5225 |
533
+ | 0.4014 | 49 | 2.3775 |
534
+ | 0.4096 | 50 | 2.3407 |
535
+ | 0.4178 | 51 | 2.6313 |
536
+ | 0.4260 | 52 | 2.6966 |
537
+ | 0.4342 | 53 | 2.3673 |
538
+ | 0.4424 | 54 | 2.4391 |
539
+ | 0.4506 | 55 | 2.5654 |
540
+ | 0.4588 | 56 | 2.2967 |
541
+ | 0.4670 | 57 | 2.4656 |
542
+ | 0.4752 | 58 | 2.2497 |
543
+ | 0.4834 | 59 | 2.3793 |
544
+ | 0.4916 | 60 | 2.4427 |
545
+ | 0.4997 | 61 | 2.2327 |
546
+ | 0.5079 | 62 | 2.04 |
547
+ | 0.5161 | 63 | 2.2881 |
548
+ | 0.5243 | 64 | 2.0218 |
549
+ | 0.5325 | 65 | 2.3258 |
550
+ | 0.5407 | 66 | 2.1217 |
551
+ | 0.5489 | 67 | 1.9639 |
552
+ | 0.5571 | 68 | 2.1681 |
553
+ | 0.5653 | 69 | 2.1941 |
554
+ | 0.5735 | 70 | 2.1217 |
555
+ | 0.5817 | 71 | 2.1097 |
556
+ | 0.5899 | 72 | 2.1242 |
557
+ | 0.5981 | 73 | 1.9071 |
558
+ | 0.6062 | 74 | 1.8552 |
559
+ | 0.6144 | 75 | 1.8398 |
560
+ | 0.6226 | 76 | 1.9429 |
561
+ | 0.6308 | 77 | 1.6457 |
562
+ | 0.6390 | 78 | 1.656 |
563
+ | 0.6472 | 79 | 1.6597 |
564
+ | 0.6554 | 80 | 1.8188 |
565
+ | 0.6636 | 81 | 2.0348 |
566
+ | 0.6718 | 82 | 1.9511 |
567
+ | 0.6800 | 83 | 1.8009 |
568
+ | 0.6882 | 84 | 1.8279 |
569
+ | 0.6964 | 85 | 1.7993 |
570
+ | 0.7046 | 86 | 1.782 |
571
+ | 0.7127 | 87 | 1.6168 |
572
+ | 0.7209 | 88 | 1.7357 |
573
+ | 0.7291 | 89 | 1.5588 |
574
+ | 0.7373 | 90 | 1.6574 |
575
+ | 0.7455 | 91 | 1.7124 |
576
+ | 0.7537 | 92 | 1.7205 |
577
+ | 0.7619 | 93 | 1.7439 |
578
+ | 0.7701 | 94 | 1.4042 |
579
+ | 0.7783 | 95 | 1.547 |
580
+ | 0.7865 | 96 | 1.5815 |
581
+ | 0.7947 | 97 | 1.4141 |
582
+ | 0.8029 | 98 | 1.3568 |
583
+ | 0.8111 | 99 | 1.5084 |
584
+ | 0.8193 | 100 | 1.4027 |
585
+ | 0.8274 | 101 | 1.4902 |
586
+ | 0.8356 | 102 | 1.317 |
587
+ | 0.8438 | 103 | 1.8041 |
588
+ | 0.8520 | 104 | 1.4397 |
589
+ | 0.8602 | 105 | 1.3406 |
590
+ | 0.8684 | 106 | 1.5127 |
591
+ | 0.8766 | 107 | 1.2449 |
592
+ | 0.8848 | 108 | 1.4508 |
593
+ | 0.8930 | 109 | 1.4171 |
594
+ | 0.9012 | 110 | 1.626 |
595
+ | 0.9094 | 111 | 1.285 |
596
+ | 0.9176 | 112 | 1.2682 |
597
+ | 0.9258 | 113 | 1.5178 |
598
+ | 0.9339 | 114 | 1.3686 |
599
+ | 0.9421 | 115 | 1.227 |
600
+ | 0.9503 | 116 | 1.3685 |
601
+ | 0.9585 | 117 | 1.3253 |
602
+ | 0.9667 | 118 | 1.0893 |
603
+ | 0.9749 | 119 | 1.1753 |
604
+ | 0.9831 | 120 | 1.252 |
605
+ | 0.9913 | 121 | 1.2304 |
606
+ | 0.9995 | 122 | 1.1111 |
607
+
608
+ </details>
609
+
610
+ ### Framework Versions
611
+ - Python: 3.11.11
612
+ - Sentence Transformers: 3.4.1
613
+ - Transformers: 4.51.0
614
+ - PyTorch: 2.6.0+cu124
615
+ - Accelerate: 1.6.0
616
+ - Datasets: 3.3.2
617
+ - Tokenizers: 0.21.1
618
+
619
+ ## Citation
620
+
621
+ ### BibTeX
622
+
623
+ #### Sentence Transformers
624
+ ```bibtex
625
+ @inproceedings{reimers-2019-sentence-bert,
626
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
627
+ author = "Reimers, Nils and Gurevych, Iryna",
628
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
629
+ month = "11",
630
+ year = "2019",
631
+ publisher = "Association for Computational Linguistics",
632
+ url = "https://arxiv.org/abs/1908.10084",
633
+ }
634
+ ```
635
+
636
+ <!--
637
+ ## Glossary
638
+
639
+ *Clearly define terms in order to be accessible across audiences.*
640
+ -->
641
+
642
+ <!--
643
+ ## Model Card Authors
644
+
645
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
646
+ -->
647
+
648
+ <!--
649
+ ## Model Card Contact
650
+
651
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
652
+ -->
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3Model"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": true,
25
+ "torch_dtype": "float16",
26
+ "transformers_version": "4.51.0",
27
+ "use_cache": true,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151669
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompts": {
3
+ "query": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
4
+ "document": ""
5
+ },
6
+ "default_prompt_name": null,
7
+ "similarity_fn_name": "cosine",
8
+ "__version__": {
9
+ "sentence_transformers": "3.4.1",
10
+ "transformers": "4.51.0",
11
+ "pytorch": "2.6.0+cu124"
12
+ }
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
metadata.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "base_model": "Alibaba-NLP/gte-Qwen2-1.5B-instruct",
3
  "training_method": "Sentence-Transformer",
4
- "commit_msg": "polar-qwen-linq",
5
  "user_name": "CocoRoF",
6
  "use_deepspeed": false,
7
  "use_peft": false,
 
1
  {
2
+ "base_model": "Qwen/Qwen3-Embedding-0.6B",
3
  "training_method": "Sentence-Transformer",
4
+ "commit_msg": "polar-qwen3-linq",
5
  "user_name": "CocoRoF",
6
  "use_deepspeed": false,
7
  "use_peft": false,
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1add5d154c89f123c327c75375adb79d9ea82814cb864bb97988856dbd1ae8e9
3
+ size 1191586112
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32768,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39cd0d96cd958b8ced0082c2d87e5c026454890764b5dccbcb30e125a22cdecc
3
+ size 11423972
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bbee1de95a97a4c232704758368fb90f4825c45f296eb9f9869041ce1ad0c65
3
+ size 5752
vocab.json ADDED
The diff for this file is too large to render. See raw diff