File size: 48,656 Bytes
93b9089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:500000
- loss:CachedGISTEmbedLoss
base_model: Qwen/Qwen3-Embedding-0.6B
widget:
- source_sentence: scramble z to retrieve negative samples, i.e. z values that should
not be predicted by the model.
sentences:
- "def get_neg_z(self, z, cur_device):\n\n if self.opt.sampling_method ==\
\ 0:\n \"\"\"carefully selecting negative samples, such that they never\n\
\ include positive samples; done individually for every time-step -->\n\
\ very slow.\"\"\"\n offset = 1\n # generate\
\ uncorrelated negative samples by using an individual random\n # offset\
\ for every index\n rand_neg_idx = torch.arange(z.size(0), device=cur_device)\n\
\n rand_offset = (\n torch.multinomial(\n \
\ torch.ones(z.size(0) - offset),\n self.neg_samples\
\ * z.size(0),\n replacement=True,\n )\n \
\ + offset\n )\n rand_offset = rand_offset.reshape(self.neg_samples,\
\ -1).to(cur_device)\n\n z_neg = torch.stack(\n [\n\
\ torch.index_select(\n z, 0, (rand_neg_idx\
\ + rand_offset[i]) % z.size(0)\n )\n for\
\ i in range(self.neg_samples)\n ],\n 2,\n \
\ )\n elif self.opt.sampling_method == 1:\n \"\"\"randomly\
\ selecting from all z values.\n\n can cause positive samples to be\
\ selected as negative\n samples as well (but probability is <0.1%\
\ in our\n experiments) done once for all time-steps, much faster.\n\
\ \"\"\"\n z = self.broadcast_batch_length(z)\n \
\ z_neg = torch.stack(\n [\n torch.index_select(\n\
\ z, 0, torch.randperm(z.size(0), device=cur_device)\n\
\ )\n for i in range(self.neg_samples)\n\
\ ],\n 2,\n )\n rand_neg_idx\
\ = None\n rand_offset = None\n\n elif self.opt.sampling_method\
\ == 2:\n \"\"\"randomly selecting from z values within the same sequence.\n\
\n can cause positive samples to be selected as negative\n \
\ samples as well done once for all time-steps, much faster.\n \"\
\"\"\n z_neg = []\n channel = z.size(-1)\n batch_dim\
\ = z.size(0)\n seq_len = z.size(1)\n\n for _ in range(self.neg_samples):\n\
\ rand_perm_index = torch.randperm(\n batch_dim\
\ * seq_len, device=cur_device\n ).remainder_(seq_len)\n \
\ rand_perm_index = rand_perm_index.reshape(batch_dim, seq_len)\n \
\ batch_index_offset = (\n torch.arange(0, batch_dim,\
\ device=cur_device) * seq_len\n )\n rand_perm_index\
\ += batch_index_offset[:, None]\n\n z_neg.append(\n \
\ z.reshape(-1, channel)[rand_perm_index.view(-1)].reshape(\n \
\ batch_dim, seq_len, channel\n )\n \
\ )\n\n z_neg = torch.stack(z_neg, 3)\n\n rand_neg_idx\
\ = None\n rand_offset = None\n\n else:\n raise Exception(\"\
Invalid sampling_method option\")\n\n return z_neg, rand_neg_idx, rand_offset"
- 마우스 전지방 3T3-L1세포주에 파이토케미칼을 조건에 따라 24시간 처리한 후 cell viability assay를 수행하였다.
- "def _sample_neg(self, assign_result, num_expected):\n neg_inds = torch.nonzero(assign_result.gt_inds\
\ == 0)\n if neg_inds.numel() != 0:\n neg_inds = neg_inds.squeeze(1)\n\
\ if len(neg_inds) <= num_expected:\n return neg_inds\n \
\ elif self.neg_balance_thr <= 0:\n # uniform sampling among all\
\ negative samples\n return random_choice(neg_inds, num_expected)\n\
\ else:\n max_overlaps = assign_result.max_overlaps.cpu().numpy()\n\
\ # balance sampling for negative samples\n neg_set = set(neg_inds.cpu().numpy())\n\
\ easy_set = set(\n np.where(\n np.logical_and(max_overlaps\
\ >= 0,\n max_overlaps < self.neg_balance_thr))[0])\n\
\ hard_set = set(np.where(max_overlaps >= self.neg_balance_thr)[0])\n\
\ easy_neg_inds = list(easy_set & neg_set)\n hard_neg_inds\
\ = list(hard_set & neg_set)\n\n num_expected_hard = int(num_expected\
\ * self.neg_hard_fraction)\n if len(hard_neg_inds) > num_expected_hard:\n\
\ sampled_hard_inds = random_choice(hard_neg_inds,\n \
\ num_expected_hard)\n else:\n\
\ sampled_hard_inds = np.array(hard_neg_inds, dtype=np.int)\n \
\ num_expected_easy = num_expected - len(sampled_hard_inds)\n \
\ if len(easy_neg_inds) > num_expected_easy:\n sampled_easy_inds\
\ = random_choice(easy_neg_inds,\n \
\ num_expected_easy)\n else:\n sampled_easy_inds\
\ = np.array(easy_neg_inds, dtype=np.int)\n sampled_inds = np.concatenate((sampled_easy_inds,\n\
\ sampled_hard_inds))\n if\
\ len(sampled_inds) < num_expected:\n num_extra = num_expected\
\ - len(sampled_inds)\n extra_inds = np.array(list(neg_set - set(sampled_inds)))\n\
\ if len(extra_inds) > num_extra:\n extra_inds\
\ = random_choice(extra_inds, num_extra)\n sampled_inds = np.concatenate((sampled_inds,\
\ extra_inds))\n sampled_inds = torch.from_numpy(sampled_inds).long().to(\n\
\ assign_result.gt_inds.device)\n return sampled_inds"
- source_sentence: if you wanted to know the mean and CI of m samples taken at a value
x_val
sentences:
- "def predictSamples(m, x_val, x, y):\n n = len(x)\n x_mean = np.mean(x)\n yhat,\
\ upper, lower, stats = regression_with_CI(x, y)\n # mean at x_val:\n y_val\
\ = stats['a'] + stats['b'] * x_val\n # standard error of measurement at x_val\
\ for m samples:\n s_m = math.sqrt( stats['MS']*(1./m + 1./n + (x_val - x_mean)**2\
\ / \\\n stats['x_SS']) )\n t, stats = studentsT(x,\
\ y, stats)\n critval = returnCritValue(n-2)\n print('Mean for %i samples at\
\ %.3f: %.3f +/- %.3f' \n %(m, x_val, y_val, critval*s_m))\n return"
- "async def resize_window(self, options):\n self.log_test(options['desc']\
\ if 'desc' in options else\n \"Resizing '\" + options['selector']\
\ + \"' window.\")\n\n # await self.page.screenshot({'path': 'preresize.png'})\n\
\n win_hndl = await self.get_handle(options['selector'])\n pre_resize_bbox\
\ = await win_hndl.boundingBox()\n\n edge_hndl = await self.get_handle(options['selector']\
\ + ' div.rsz-' + options['side'])\n edge_bbox = await edge_hndl.boundingBox()\n\
\n new_x = edge_bbox['x'] + \\\n resize_dirs[options['side']][0]\
\ * options['distance']\n new_y = edge_bbox['y'] + \\\n resize_dirs[options['side']][1]\
\ * options['distance']\n\n await edge_hndl.hover()\n await self.page.mouse.down()\n\
\ await self.page.mouse.move(new_x, new_y)\n await self.page.mouse.up()\n\
\n post_resize_bbox = await win_hndl.boundingBox()\n dw = post_resize_bbox['width']\
\ - pre_resize_bbox['width']\n dh = post_resize_bbox['height'] - pre_resize_bbox['height']\n\
\n resized = ((dw != 0) or (dh != 0))\n if options['expectChange']:\n\
\ self.assertIsNot(resized, False,\n \"\
The '\" + options['selector'] + \"' element was NOT resized and should have been.\"\
)\n else:\n self.assertIsNot(resized, True,\n \
\ \"The '\" + options['selector'] + \"' element was resized and\
\ should NOT have been.\")\n\n # await self.page.screenshot({'path': 'postresize.png'})"
- "def _batch_stats(self, x):\n mu = torch.mean(x, dim=0, keepdim=True)\n\
\ var = torch.var(x, dim=0, keepdim=True)\n return mu, var"
- source_sentence: 백악관은 도널드 트럼프 미국 대통령이 누구와 통화를 했다고 했어?
sentences:
- "def __str__(self):\n return '\\n'.join([self.header, self.sequence, self.header2,\
\ \n array('b', [x + self.qbase for x in self.quality]).tostring()])"
- ' 백악관은 16일(현지시간) 미-중 정상이 전날 전화통화를 통해 최근 한반도 상황을 놓고 논의했다며 이같이 전했다.'
- 도널드 트럼프 미국 대통령
- source_sentence: Return an example step handler for the given gym environemtn name,
that uses the given config file.
sentences:
- "def stub_config():\n defaults = {\n \"activate_recruiter_on_start\"\
: True,\n \"ad_group\": \"Test ad group\",\n \"approve_requirement\"\
: 95,\n \"assign_qualifications\": True,\n \"auto_recruit\": True,\n\
\ \"aws_access_key_id\": \"fake aws key\",\n \"aws_secret_access_key\"\
: \"fake aws secret\",\n \"aws_region\": \"us-east-1\",\n \"base_payment\"\
: 0.01,\n \"base_port\": 5000,\n \"browser_exclude_rule\": \"MSIE,\
\ mobile, tablet\",\n \"clock_on\": False,\n \"contact_email_on_error\"\
: \"[email protected]\",\n \"dallinger_email_address\": \"[email protected]\"\
,\n \"database_size\": \"standard-0\",\n \"disable_when_duration_exceeded\"\
: True,\n \"enable_global_experiment_registry\": False,\n \"redis_size\"\
: \"premium-0\",\n \"dashboard_user\": \"admin\",\n \"database_url\"\
: \"postgresql://postgres@localhost/dallinger\",\n \"description\": \"\
fake HIT description\",\n \"duration\": 1.0,\n \"dyno_type\": \"\
free\",\n \"heroku_app_id_root\": \"fake-customid\",\n \"heroku_auth_token\"\
: \"heroku secret\",\n \"heroku_python_version\": \"3.9.2\",\n \"\
heroku_team\": \"\",\n \"host\": \"0.0.0.0\",\n \"id\": \"TEST_EXPERIMENT_UID\"\
, # This is a significant value; change with caution.\n \"keywords\":\
\ \"kw1, kw2, kw3\",\n \"lifetime\": 1,\n \"lock_table_when_creating_participant\"\
: True,\n \"logfile\": \"-\",\n \"loglevel\": 0,\n \"mode\"\
: \"debug\",\n \"num_dynos_web\": 1,\n \"num_dynos_worker\": 1,\n\
\ \"organization_name\": \"Monsters University\",\n \"sentry\":\
\ True,\n \"smtp_host\": \"smtp.fakehost.com:587\",\n \"smtp_username\"\
: \"fake email username\",\n \"smtp_password\": \"fake email password\"\
,\n \"threads\": \"1\",\n \"title\": \"fake experiment title\",\n\
\ \"us_only\": True,\n \"webdriver_type\": \"chrome_headless\",\n\
\ \"whimsical\": True,\n \"replay\": False,\n \"worker_multiplier\"\
: 1.5,\n }\n from dallinger.config import Configuration, default_keys\n\n\
\ config = Configuration()\n for key in default_keys:\n config.register(*key)\n\
\ config.extend(defaults.copy())\n # Patch load() so we don't update any\
\ key/value pairs from actual files:\n config.load = mock.Mock(side_effect=lambda:\
\ setattr(config, \"ready\", True))\n config.ready = True\n\n return config"
- 상부 챔버는 심방(또는 심실)이라고 불리며, 하부 챔버는 심실이라고 불립니다. 두 개의 심방은 심장으로 들어오는 혈액을 받는 챔버 역할을 하며,
더 근육질인 심실은 혈액을 심장에서 내보냅니다.
- "def get_step_handler_for_gym_env(gym_env_name: str, cfg: Configuration) -> StepRewardDoneHandler:\r\
\n\r\n if gym_env_name == 'Acrobot-v1':\r\n handler = AcrobotStepHandler(cfg)\r\
\n elif gym_env_name == 'CartPole-v1':\r\n handler = CartPoleStepHandler(cfg)\r\
\n elif gym_env_name == 'MountainCarContinuous-v0':\r\n handler = ContinuousMountainCarStepHandler(cfg)\r\
\n elif gym_env_name == 'MountainCar-v0':\r\n handler = MountainCarStepHandler(cfg)\r\
\n elif gym_env_name == 'Pendulum-v0':\r\n handler = PendulumStepHandler(cfg)\r\
\n else:\r\n raise NotImplementedError(f'No support for this gym env:\
\ {gym_env_name}')\r\n\r\n return handler"
- source_sentence: create list of spiders that obeys the visible projects list, through
use of the spider selection menu
sentences:
- "def create_spiders_list():\n spiders_lst = [obj for obj in globals().values()\
\ if\n inspect.isclass(obj) and str(obj).split('.')[2] == 'spiders'\
\ and 'BaseSpider' not in str(obj)]\n visible_projects = find_visible_projects()\n\
\ spiders_dict = {i.split('.')[0]: [obj for obj in spiders_lst if i.split('.')[0]\
\ in str(obj)] for i in\n os.listdir('HousingPriceScraper/HousingPriceScraper/spiders/SpiderGroups')[:-1]\
\ if i.split('.')[0] in visible_projects}\n if len(list(spiders_dict.keys()))\
\ > 0:\n spiders_lst = select_spiders(spiders_dict)\n else:\n \
\ print('There are no visible projects, got to set_visible_projects to set defaults')\n\
\ return False\n return spiders_lst"
- "def game(self, game_id=None, secret=None):\n if game_id is not None:\n\
\ self.game_id = game_id\n\n if secret is not None:\n \
\ self.secret = secret\n\n return self.game_id, self.secret"
- "def instantiate_pipelines(settings, simulator_settings):\n pipelines = []\n\
\ # lock to manage race parallel processes race conditions \n lock = Lock()\n\
\n logger.info(\"\\nVALIDATING PIPELINES\\n\")\n for p_idx, pipeline_settings\
\ in enumerate(settings.runs):\n\n # turn a pipeline off by specifying\
\ num_runs as 0\n num_runs = pipeline_settings.get(\"num_runs\", 0)\n\n\
\ # start_idx determines the first dataset name's starting idx\n \
\ start_idx = pipeline_settings.get(\"start_idx\", 0)\n\n if num_runs:\n\
\ logger.info(\"Validating run: {}\\n\".format(p_idx))\n else:\n\
\ logger.info(\"Skipping run: {}\\n\".format(p_idx))\n \n\
\ for idx in range(start_idx, start_idx + num_runs): \n \
\ logger.info(\"Pipeline sub index: {}\\n\".format(idx))\n #\
\ class factory and instantiate pipeline object\n Pipeline = pipeline_factory(pipeline_settings[\"\
pipeline_name\"])\n p = Pipeline(pipeline_settings, idx, simulator_settings)\n\
\ \n # give each pipeline an idependent logger\n \
\ log_name = \"dSim_{}\".format(p.pipeline_settings[\"dataset_name\"])\n \
\ log_path = os.path.join(p.pipeline_settings[\"outdir\"],\n \
\ p.pipeline_settings[\"dataset_name\"]+'.log')\n\
\ fh = logging.FileHandler(log_path, mode='w')\n fh.setLevel(logging.DEBUG)\n\
\ format = \"%(asctime)-6s: %(name)s - %(levelname)s - %(message)s\"\
\n fmt = logging.Formatter(format)\n fh.setFormatter(fmt)\n\
\ local_logger = logging.getLogger(log_name)\n local_logger.addHandler(fh)\n\
\ logger.info(\"Init local logging: {}\".format(log_path))\n \
\ p.logger = local_logger\n\n # pipeline/ dataset directory\n\
\ p.pipeline_settings[\"lock\"] = lock\n\n # validate all\
\ submodules for each pipeline is ready (use local logger) \n p.instantiate_modules()\n\
\n # append to list of instantiated pipelines\n pipelines.append(p)\n\
\ return pipelines"
datasets:
- CocoRoF/massive_triplet_v3
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision 744169034862c8eec56628663995004342e4e449 -->
- **Maximum Sequence Length:** 32768 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/POLAR-Qwen3-0.6b-linq-gist")
# Run inference
sentences = [
'create list of spiders that obeys the visible projects list, through use of the spider selection menu',
"def create_spiders_list():\n spiders_lst = [obj for obj in globals().values() if\n inspect.isclass(obj) and str(obj).split('.')[2] == 'spiders' and 'BaseSpider' not in str(obj)]\n visible_projects = find_visible_projects()\n spiders_dict = {i.split('.')[0]: [obj for obj in spiders_lst if i.split('.')[0] in str(obj)] for i in\n os.listdir('HousingPriceScraper/HousingPriceScraper/spiders/SpiderGroups')[:-1] if i.split('.')[0] in visible_projects}\n if len(list(spiders_dict.keys())) > 0:\n spiders_lst = select_spiders(spiders_dict)\n else:\n print('There are no visible projects, got to set_visible_projects to set defaults')\n return False\n return spiders_lst",
'def instantiate_pipelines(settings, simulator_settings):\n pipelines = []\n # lock to manage race parallel processes race conditions \n lock = Lock()\n\n logger.info("\\nVALIDATING PIPELINES\\n")\n for p_idx, pipeline_settings in enumerate(settings.runs):\n\n # turn a pipeline off by specifying num_runs as 0\n num_runs = pipeline_settings.get("num_runs", 0)\n\n # start_idx determines the first dataset name\'s starting idx\n start_idx = pipeline_settings.get("start_idx", 0)\n\n if num_runs:\n logger.info("Validating run: {}\\n".format(p_idx))\n else:\n logger.info("Skipping run: {}\\n".format(p_idx))\n \n for idx in range(start_idx, start_idx + num_runs): \n logger.info("Pipeline sub index: {}\\n".format(idx))\n # class factory and instantiate pipeline object\n Pipeline = pipeline_factory(pipeline_settings["pipeline_name"])\n p = Pipeline(pipeline_settings, idx, simulator_settings)\n \n # give each pipeline an idependent logger\n log_name = "dSim_{}".format(p.pipeline_settings["dataset_name"])\n log_path = os.path.join(p.pipeline_settings["outdir"],\n p.pipeline_settings["dataset_name"]+\'.log\')\n fh = logging.FileHandler(log_path, mode=\'w\')\n fh.setLevel(logging.DEBUG)\n format = "%(asctime)-6s: %(name)s - %(levelname)s - %(message)s"\n fmt = logging.Formatter(format)\n fh.setFormatter(fmt)\n local_logger = logging.getLogger(log_name)\n local_logger.addHandler(fh)\n logger.info("Init local logging: {}".format(log_path))\n p.logger = local_logger\n\n # pipeline/ dataset directory\n p.pipeline_settings["lock"] = lock\n\n # validate all submodules for each pipeline is ready (use local logger) \n p.instantiate_modules()\n\n # append to list of instantiated pipelines\n pipelines.append(p)\n return pipelines',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### massive_triplet_v3
* Dataset: [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3) at [51266de](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3/tree/51266de17705934d628da7d4d9f74cc5f7b0b791)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 22.57 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 132.85 tokens</li><li>max: 1160 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 122.89 tokens</li><li>max: 1758 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:-----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>방학기간에 소외지역의 청소년을 대상으로 청춘누리 봉사단이 할 수 있는 캠프의 이름은 뭐야</code> | <code>주요 수상기관 교육기부프로그램 개요<br>4. 대학생 동아리 「청춘누리 봉사단」<br>□ 청춘누리축제<br>◦ (참가대상) 전국 유치원, 초·중·고등학생<br>◦ (활동내역) 대학생들이 운영하는 교육기부활동을 청소년들이 직접 체험해봄으로써 학생들이 사고력, 창의력 향상을 도모하고 자신의 꿈을 펼칠 수 있는 장 마련<br>◦ (주요성과) 대학생들의 교육기부에 대한 전반적인 이해를 돕고 교육 기부 활동의 우수성 홍보<br>□ 청춘누리봉사단과 함께하는 교육기부(쏙쏙캠프, 함성소리)<br>◦ (참가대상) 전국의 초·중학생<br>◦ (활동내역)<br>- 쏙쏙캠프 : 방학을 이용하여 상대적으로 교육기부 혜택이 적은 소외 지역을 방문하여 창의력 체험, 진로체험 등을 제공, 배움의 기회 균등 및 꿈을 찾아주는 활동 전개<br>- 함성소리 : 학기중 토요일마다 수도권에 있는 청소년 대상으로 꿈을 설계하고 지원하는 활동 전개<br>◦ (주요성과) 소외지역 청소년 대상 배움의 기회를 제공하고 대학생들의 봉사활동을 장려하여 많은 청소년 대상 멘토 활동 전개</code> | <code>개도국에 IT나눔을 실천한 청년들과 아름다운 동행<br>□ 미래창조과학부(장관 최문기)와 한국정보화진흥원(원장 장광수)은 12월 18일(수) 오후 2시 10분 과천과학관에서 「2013년도 월드프렌즈 IT봉사단 귀국보고대회」(이하, IT봉사단 귀국보고대회)를 개최하였다.<br>o 정부는 2001년부터 현재까지 전 세계 70여개 개도국에 5,158명의 IT봉사단을 파견한 바 있으며, 「IT봉사단 귀국보고대회」는 매년 개도국에서 활동하고 온 봉사단원들이 서로의 경험을 공유하고 글로벌 역량을 배양하는 ‘소통'과 ‘협력‘의 장(場)으로 운영되고 있다.<br>※ 월드프렌즈(World Frends Korea, WFK) : 우리나라 해외봉사단사업 통합브랜드<br>□ 이번 「IT봉사단 귀국보고대회」에는 30개국에 파견되었던 552명의 봉사단원 중 약 300여명의 봉사단원이 참석했으며, 윤종록 제2차관과 주한 외교사절(인도네시아 대사, 코스타리카 대사, 네팔 대사 등)이 참석해 세계의 오지를 누비고 온 봉사단원들을 격려했다.<br>o 윤종록 제2차관은 IT봉사단원들에게“귀한경험을 활용하여 대한민국의 이름을 빛내는 사람이 되기를 바란다”는 당부와 함께“정부는 여러분과 같은 젊은이들이 세계를 무대로 능력을 마음껏 발휘할 수 있는 글로벌 플랫폼을 구축하는데 노력할 계획”이라고 덧붙였다.</code> |
| <code>Loads sensor filters from an Excel file. Both new style XLSX and oldstyle XLS formats are supported.</code> | <code>def load_sensor_filters_excel(filename, normalise=False, sheet_names=None):<br><br> sensor_filters = {}<br> with pd.ExcelFile(filename) as excel_file:<br> # default is all sheets<br> if not sheet_names:<br> sheet_names = excel_file.sheet_names<br><br> for sheet in sheet_names:<br> try:<br> dataframe = excel_file.parse(<br> sheet, index_col=0<br> ) # the sheet as a DataFrame<br> # OK, we have the data frame. Let's process it...<br> if not _validate_filter_dataframe(dataframe):<br> continue<br><br> if normalise:<br> dataframe = _normalise_dataframe(dataframe)<br><br> sensor_filters[sheet] = (<br> np.array(dataframe.index),<br> dataframe.values.transpose(),<br> )<br><br> except xlrd.biffh.XLRDError:<br> continue<br> # except xlrd.biffh.XLRDError as xlrd_error:<br> # TODO: log wa...</code> | <code>def convert_csv(fname):<br><br> # Make sure this is an Excel file.<br> if (not is_excel_file(fname)):<br><br> # Not Excel, so no sheets.<br> return []<br><br> # Run soffice in listening mode if it is not already running.<br> run_soffice()<br> <br> # TODO: Make sure soffice is running in listening mode.<br> # <br> <br> # Connect to the local LibreOffice server.<br> context = connect(Socket(HOST, PORT))<br><br> # Load the Excel sheet.<br> component = get_component(fname, context)<br><br> # Iterate on all the sheets in the spreadsheet.<br> controller = component.getCurrentController()<br> sheets = component.getSheets()<br> enumeration = sheets.createEnumeration()<br> r = []<br> pos = 0<br> if sheets.getCount() > 0:<br> while enumeration.hasMoreElements():<br><br> # Move to next sheet.<br> sheet = enumeration.nextElement()<br> name = sheet.getName()<br> if (name.count(" ") > 10):<br> name = name.replace(" ", "")<br> name = fix_file_name(name)<br> ...</code> |
| <code>Create an additional feature to metadata by counting number of occurrences in data, for a specific element_type</code> | <code>def create_count_features(metadata, element_type, data, grp_feat, res_feat, feature_suffix):<br> feature_name = 'n_'+ element_type + '_modif' + feature_suffix<br> newfeature = (data.groupby([grp_feat])[res_feat]<br> .count()<br> .reset_index()<br> .fillna(0))<br> newfeature.columns = [grp_feat, feature_name]<br> metadata = pd.merge(metadata, newfeature, on=grp_feat, how="outer").fillna(0)<br> return metadata</code> | <code>def test(self):<br> count = Counter()<br> for example in self.testing_set:<br> classification = self.classify(example.attributes)<br><br> if example.CLASS and classification:<br> count['TP'] += 1<br> elif not example.CLASS and classification:<br> count['FP'] += 1<br> elif not example.CLASS and not classification:<br> count['TN'] += 1<br> elif example.CLASS and not classification:<br> count['FN'] += 1<br> return count</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 40960, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-06
- `weight_decay`: 0.01
- `adam_beta2`: 0.99
- `adam_epsilon`: 1e-07
- `max_grad_norm`: 0.3
- `num_train_epochs`: 1.0
- `warmup_ratio`: 0.1
- `dataloader_num_workers`: 16
- `hub_model_id`: CocoRoF/POLAR-Qwen3-0.6b-linq-gist
- `prompts`: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-06
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.99
- `adam_epsilon`: 1e-07
- `max_grad_norm`: 0.3
- `num_train_epochs`: 1.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 16
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: CocoRoF/POLAR-Qwen3-0.6b-linq-gist
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0082 | 1 | 2.0699 |
| 0.0164 | 2 | 1.7826 |
| 0.0246 | 3 | 1.9799 |
| 0.0328 | 4 | 8.1569 |
| 0.0410 | 5 | 4.641 |
| 0.0492 | 6 | 4.847 |
| 0.0573 | 7 | 8.2247 |
| 0.0655 | 8 | 8.9525 |
| 0.0737 | 9 | 4.2975 |
| 0.0819 | 10 | 6.3088 |
| 0.0901 | 11 | 5.6983 |
| 0.0983 | 12 | 4.3867 |
| 0.1065 | 13 | 6.1817 |
| 0.1147 | 14 | 6.0226 |
| 0.1229 | 15 | 15.2869 |
| 0.1311 | 16 | 11.8965 |
| 0.1393 | 17 | 9.4219 |
| 0.1475 | 18 | 5.9216 |
| 0.1557 | 19 | 6.5436 |
| 0.1639 | 20 | 5.4599 |
| 0.1720 | 21 | 4.6468 |
| 0.1802 | 22 | 4.9366 |
| 0.1884 | 23 | 4.5267 |
| 0.1966 | 24 | 4.9044 |
| 0.2048 | 25 | 4.9682 |
| 0.2130 | 26 | 4.1537 |
| 0.2212 | 27 | 4.0729 |
| 0.2294 | 28 | 3.9093 |
| 0.2376 | 29 | 3.3863 |
| 0.2458 | 30 | 3.9228 |
| 0.2540 | 31 | 2.8689 |
| 0.2622 | 32 | 3.3243 |
| 0.2704 | 33 | 2.7494 |
| 0.2785 | 34 | 3.108 |
| 0.2867 | 35 | 3.1585 |
| 0.2949 | 36 | 3.2985 |
| 0.3031 | 37 | 2.7137 |
| 0.3113 | 38 | 2.8327 |
| 0.3195 | 39 | 2.7932 |
| 0.3277 | 40 | 3.038 |
| 0.3359 | 41 | 2.769 |
| 0.3441 | 42 | 2.7036 |
| 0.3523 | 43 | 3.1873 |
| 0.3605 | 44 | 2.5984 |
| 0.3687 | 45 | 2.6836 |
| 0.3769 | 46 | 3.0616 |
| 0.3850 | 47 | 2.87 |
| 0.3932 | 48 | 2.5225 |
| 0.4014 | 49 | 2.3775 |
| 0.4096 | 50 | 2.3407 |
| 0.4178 | 51 | 2.6313 |
| 0.4260 | 52 | 2.6966 |
| 0.4342 | 53 | 2.3673 |
| 0.4424 | 54 | 2.4391 |
| 0.4506 | 55 | 2.5654 |
| 0.4588 | 56 | 2.2967 |
| 0.4670 | 57 | 2.4656 |
| 0.4752 | 58 | 2.2497 |
| 0.4834 | 59 | 2.3793 |
| 0.4916 | 60 | 2.4427 |
| 0.4997 | 61 | 2.2327 |
| 0.5079 | 62 | 2.04 |
| 0.5161 | 63 | 2.2881 |
| 0.5243 | 64 | 2.0218 |
| 0.5325 | 65 | 2.3258 |
| 0.5407 | 66 | 2.1217 |
| 0.5489 | 67 | 1.9639 |
| 0.5571 | 68 | 2.1681 |
| 0.5653 | 69 | 2.1941 |
| 0.5735 | 70 | 2.1217 |
| 0.5817 | 71 | 2.1097 |
| 0.5899 | 72 | 2.1242 |
| 0.5981 | 73 | 1.9071 |
| 0.6062 | 74 | 1.8552 |
| 0.6144 | 75 | 1.8398 |
| 0.6226 | 76 | 1.9429 |
| 0.6308 | 77 | 1.6457 |
| 0.6390 | 78 | 1.656 |
| 0.6472 | 79 | 1.6597 |
| 0.6554 | 80 | 1.8188 |
| 0.6636 | 81 | 2.0348 |
| 0.6718 | 82 | 1.9511 |
| 0.6800 | 83 | 1.8009 |
| 0.6882 | 84 | 1.8279 |
| 0.6964 | 85 | 1.7993 |
| 0.7046 | 86 | 1.782 |
| 0.7127 | 87 | 1.6168 |
| 0.7209 | 88 | 1.7357 |
| 0.7291 | 89 | 1.5588 |
| 0.7373 | 90 | 1.6574 |
| 0.7455 | 91 | 1.7124 |
| 0.7537 | 92 | 1.7205 |
| 0.7619 | 93 | 1.7439 |
| 0.7701 | 94 | 1.4042 |
| 0.7783 | 95 | 1.547 |
| 0.7865 | 96 | 1.5815 |
| 0.7947 | 97 | 1.4141 |
| 0.8029 | 98 | 1.3568 |
| 0.8111 | 99 | 1.5084 |
| 0.8193 | 100 | 1.4027 |
| 0.8274 | 101 | 1.4902 |
| 0.8356 | 102 | 1.317 |
| 0.8438 | 103 | 1.8041 |
| 0.8520 | 104 | 1.4397 |
| 0.8602 | 105 | 1.3406 |
| 0.8684 | 106 | 1.5127 |
| 0.8766 | 107 | 1.2449 |
| 0.8848 | 108 | 1.4508 |
| 0.8930 | 109 | 1.4171 |
| 0.9012 | 110 | 1.626 |
| 0.9094 | 111 | 1.285 |
| 0.9176 | 112 | 1.2682 |
| 0.9258 | 113 | 1.5178 |
| 0.9339 | 114 | 1.3686 |
| 0.9421 | 115 | 1.227 |
| 0.9503 | 116 | 1.3685 |
| 0.9585 | 117 | 1.3253 |
| 0.9667 | 118 | 1.0893 |
| 0.9749 | 119 | 1.1753 |
| 0.9831 | 120 | 1.252 |
| 0.9913 | 121 | 1.2304 |
| 0.9995 | 122 | 1.1111 |
</details>
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |