File size: 48,656 Bytes
93b9089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:500000
- loss:CachedGISTEmbedLoss
base_model: Qwen/Qwen3-Embedding-0.6B
widget:
- source_sentence: scramble z to retrieve negative samples, i.e. z values that should
    not be predicted by the model.
  sentences:
  - "def get_neg_z(self, z, cur_device):\n\n        if self.opt.sampling_method ==\
    \ 0:\n            \"\"\"carefully selecting negative samples, such that they never\n\
    \            include positive samples; done individually for every time-step -->\n\
    \            very slow.\"\"\"\n            offset = 1\n            # generate\
    \ uncorrelated negative samples by using an individual random\n            # offset\
    \ for every index\n            rand_neg_idx = torch.arange(z.size(0), device=cur_device)\n\
    \n            rand_offset = (\n                torch.multinomial(\n          \
    \          torch.ones(z.size(0) - offset),\n                    self.neg_samples\
    \ * z.size(0),\n                    replacement=True,\n                )\n   \
    \             + offset\n            )\n            rand_offset = rand_offset.reshape(self.neg_samples,\
    \ -1).to(cur_device)\n\n            z_neg = torch.stack(\n                [\n\
    \                    torch.index_select(\n                        z, 0, (rand_neg_idx\
    \ + rand_offset[i]) % z.size(0)\n                    )\n                    for\
    \ i in range(self.neg_samples)\n                ],\n                2,\n     \
    \       )\n        elif self.opt.sampling_method == 1:\n            \"\"\"randomly\
    \ selecting from all z values.\n\n            can cause positive samples to be\
    \ selected as negative\n            samples as well (but probability is <0.1%\
    \ in our\n            experiments) done once for all time-steps, much faster.\n\
    \            \"\"\"\n            z = self.broadcast_batch_length(z)\n        \
    \    z_neg = torch.stack(\n                [\n                    torch.index_select(\n\
    \                        z, 0, torch.randperm(z.size(0), device=cur_device)\n\
    \                    )\n                    for i in range(self.neg_samples)\n\
    \                ],\n                2,\n            )\n            rand_neg_idx\
    \ = None\n            rand_offset = None\n\n        elif self.opt.sampling_method\
    \ == 2:\n            \"\"\"randomly selecting from z values within the same sequence.\n\
    \n            can cause positive samples to be selected as negative\n        \
    \    samples as well done once for all time-steps, much faster.\n            \"\
    \"\"\n            z_neg = []\n            channel = z.size(-1)\n            batch_dim\
    \ = z.size(0)\n            seq_len = z.size(1)\n\n            for _ in range(self.neg_samples):\n\
    \                rand_perm_index = torch.randperm(\n                    batch_dim\
    \ * seq_len, device=cur_device\n                ).remainder_(seq_len)\n      \
    \          rand_perm_index = rand_perm_index.reshape(batch_dim, seq_len)\n   \
    \             batch_index_offset = (\n                    torch.arange(0, batch_dim,\
    \ device=cur_device) * seq_len\n                )\n                rand_perm_index\
    \ += batch_index_offset[:, None]\n\n                z_neg.append(\n          \
    \          z.reshape(-1, channel)[rand_perm_index.view(-1)].reshape(\n       \
    \                 batch_dim, seq_len, channel\n                    )\n       \
    \         )\n\n            z_neg = torch.stack(z_neg, 3)\n\n            rand_neg_idx\
    \ = None\n            rand_offset = None\n\n        else:\n            raise Exception(\"\
    Invalid sampling_method option\")\n\n        return z_neg, rand_neg_idx, rand_offset"
  - 마우스 전지방 3T3-L1세포주에 파이토케미칼을 조건에 따라 24시간 처리한  cell viability assay를 수행하였다.
  - "def _sample_neg(self, assign_result, num_expected):\n        neg_inds = torch.nonzero(assign_result.gt_inds\
    \ == 0)\n        if neg_inds.numel() != 0:\n            neg_inds = neg_inds.squeeze(1)\n\
    \        if len(neg_inds) <= num_expected:\n            return neg_inds\n    \
    \    elif self.neg_balance_thr <= 0:\n            # uniform sampling among all\
    \ negative samples\n            return random_choice(neg_inds, num_expected)\n\
    \        else:\n            max_overlaps = assign_result.max_overlaps.cpu().numpy()\n\
    \            # balance sampling for negative samples\n            neg_set = set(neg_inds.cpu().numpy())\n\
    \            easy_set = set(\n                np.where(\n                    np.logical_and(max_overlaps\
    \ >= 0,\n                                   max_overlaps < self.neg_balance_thr))[0])\n\
    \            hard_set = set(np.where(max_overlaps >= self.neg_balance_thr)[0])\n\
    \            easy_neg_inds = list(easy_set & neg_set)\n            hard_neg_inds\
    \ = list(hard_set & neg_set)\n\n            num_expected_hard = int(num_expected\
    \ * self.neg_hard_fraction)\n            if len(hard_neg_inds) > num_expected_hard:\n\
    \                sampled_hard_inds = random_choice(hard_neg_inds,\n          \
    \                                        num_expected_hard)\n            else:\n\
    \                sampled_hard_inds = np.array(hard_neg_inds, dtype=np.int)\n \
    \           num_expected_easy = num_expected - len(sampled_hard_inds)\n      \
    \      if len(easy_neg_inds) > num_expected_easy:\n                sampled_easy_inds\
    \ = random_choice(easy_neg_inds,\n                                           \
    \       num_expected_easy)\n            else:\n                sampled_easy_inds\
    \ = np.array(easy_neg_inds, dtype=np.int)\n            sampled_inds = np.concatenate((sampled_easy_inds,\n\
    \                                           sampled_hard_inds))\n            if\
    \ len(sampled_inds) < num_expected:\n                num_extra = num_expected\
    \ - len(sampled_inds)\n                extra_inds = np.array(list(neg_set - set(sampled_inds)))\n\
    \                if len(extra_inds) > num_extra:\n                    extra_inds\
    \ = random_choice(extra_inds, num_extra)\n                sampled_inds = np.concatenate((sampled_inds,\
    \ extra_inds))\n            sampled_inds = torch.from_numpy(sampled_inds).long().to(\n\
    \                assign_result.gt_inds.device)\n            return sampled_inds"
- source_sentence: if you wanted to know the mean and CI of m samples taken at a value
    x_val
  sentences:
  - "def predictSamples(m, x_val, x, y):\n  n = len(x)\n  x_mean = np.mean(x)\n  yhat,\
    \ upper, lower, stats = regression_with_CI(x, y)\n  # mean at x_val:\n  y_val\
    \ = stats['a'] + stats['b'] * x_val\n  # standard error of measurement at x_val\
    \ for m samples:\n  s_m = math.sqrt( stats['MS']*(1./m + 1./n + (x_val - x_mean)**2\
    \ / \\\n                               stats['x_SS']) )\n  t, stats = studentsT(x,\
    \ y, stats)\n  critval = returnCritValue(n-2)\n  print('Mean for %i samples at\
    \ %.3f: %.3f +/- %.3f' \n        %(m, x_val, y_val, critval*s_m))\n  return"
  - "async def resize_window(self, options):\n        self.log_test(options['desc']\
    \ if 'desc' in options else\n                      \"Resizing '\" + options['selector']\
    \ + \"' window.\")\n\n        # await self.page.screenshot({'path': 'preresize.png'})\n\
    \n        win_hndl = await self.get_handle(options['selector'])\n        pre_resize_bbox\
    \ = await win_hndl.boundingBox()\n\n        edge_hndl = await self.get_handle(options['selector']\
    \ + ' div.rsz-' + options['side'])\n        edge_bbox = await edge_hndl.boundingBox()\n\
    \n        new_x = edge_bbox['x'] + \\\n            resize_dirs[options['side']][0]\
    \ * options['distance']\n        new_y = edge_bbox['y'] + \\\n            resize_dirs[options['side']][1]\
    \ * options['distance']\n\n        await edge_hndl.hover()\n        await self.page.mouse.down()\n\
    \        await self.page.mouse.move(new_x, new_y)\n        await self.page.mouse.up()\n\
    \n        post_resize_bbox = await win_hndl.boundingBox()\n        dw = post_resize_bbox['width']\
    \ - pre_resize_bbox['width']\n        dh = post_resize_bbox['height'] - pre_resize_bbox['height']\n\
    \n        resized = ((dw != 0) or (dh != 0))\n        if options['expectChange']:\n\
    \            self.assertIsNot(resized, False,\n                             \"\
    The '\" + options['selector'] + \"' element was NOT resized and should have been.\"\
    )\n        else:\n            self.assertIsNot(resized, True,\n              \
    \               \"The '\" + options['selector'] + \"' element was resized and\
    \ should NOT have been.\")\n\n        # await self.page.screenshot({'path': 'postresize.png'})"
  - "def _batch_stats(self, x):\n        mu = torch.mean(x, dim=0, keepdim=True)\n\
    \        var = torch.var(x, dim=0, keepdim=True)\n        return mu, var"
- source_sentence: 백악관은 도널드 트럼프 미국 대통령이 누구와 통화를 했다고 했어?
  sentences:
  - "def __str__(self):\n        return '\\n'.join([self.header, self.sequence, self.header2,\
    \ \n                array('b', [x + self.qbase for x in self.quality]).tostring()])"
  - ' 백악관은 16일(현지시간) 미-중 정상이 전날 전화통화를 통해 최근 한반도 상황을 놓고 논의했다며 이같이 전했다.'
  - 도널드 트럼프 미국 대통령
- source_sentence: Return an example step handler for the given gym environemtn name,
    that uses the given config file.
  sentences:
  - "def stub_config():\n    defaults = {\n        \"activate_recruiter_on_start\"\
    : True,\n        \"ad_group\": \"Test ad group\",\n        \"approve_requirement\"\
    : 95,\n        \"assign_qualifications\": True,\n        \"auto_recruit\": True,\n\
    \        \"aws_access_key_id\": \"fake aws key\",\n        \"aws_secret_access_key\"\
    : \"fake aws secret\",\n        \"aws_region\": \"us-east-1\",\n        \"base_payment\"\
    : 0.01,\n        \"base_port\": 5000,\n        \"browser_exclude_rule\": \"MSIE,\
    \ mobile, tablet\",\n        \"clock_on\": False,\n        \"contact_email_on_error\"\
    : \"[email protected]\",\n        \"dallinger_email_address\": \"[email protected]\"\
    ,\n        \"database_size\": \"standard-0\",\n        \"disable_when_duration_exceeded\"\
    : True,\n        \"enable_global_experiment_registry\": False,\n        \"redis_size\"\
    : \"premium-0\",\n        \"dashboard_user\": \"admin\",\n        \"database_url\"\
    : \"postgresql://postgres@localhost/dallinger\",\n        \"description\": \"\
    fake HIT description\",\n        \"duration\": 1.0,\n        \"dyno_type\": \"\
    free\",\n        \"heroku_app_id_root\": \"fake-customid\",\n        \"heroku_auth_token\"\
    : \"heroku secret\",\n        \"heroku_python_version\": \"3.9.2\",\n        \"\
    heroku_team\": \"\",\n        \"host\": \"0.0.0.0\",\n        \"id\": \"TEST_EXPERIMENT_UID\"\
    ,  # This is a significant value; change with caution.\n        \"keywords\":\
    \ \"kw1, kw2, kw3\",\n        \"lifetime\": 1,\n        \"lock_table_when_creating_participant\"\
    : True,\n        \"logfile\": \"-\",\n        \"loglevel\": 0,\n        \"mode\"\
    : \"debug\",\n        \"num_dynos_web\": 1,\n        \"num_dynos_worker\": 1,\n\
    \        \"organization_name\": \"Monsters University\",\n        \"sentry\":\
    \ True,\n        \"smtp_host\": \"smtp.fakehost.com:587\",\n        \"smtp_username\"\
    : \"fake email username\",\n        \"smtp_password\": \"fake email password\"\
    ,\n        \"threads\": \"1\",\n        \"title\": \"fake experiment title\",\n\
    \        \"us_only\": True,\n        \"webdriver_type\": \"chrome_headless\",\n\
    \        \"whimsical\": True,\n        \"replay\": False,\n        \"worker_multiplier\"\
    : 1.5,\n    }\n    from dallinger.config import Configuration, default_keys\n\n\
    \    config = Configuration()\n    for key in default_keys:\n        config.register(*key)\n\
    \    config.extend(defaults.copy())\n    # Patch load() so we don't update any\
    \ key/value pairs from actual files:\n    config.load = mock.Mock(side_effect=lambda:\
    \ setattr(config, \"ready\", True))\n    config.ready = True\n\n    return config"
  - 상부 챔버는 심방(또는 심실)이라고 불리며, 하부 챔버는 심실이라고 불립니다.  개의 심방은 심장으로 들어오는 혈액을 받는 챔버 역할을 하며,
     근육질인 심실은 혈액을 심장에서 내보냅니다.
  - "def get_step_handler_for_gym_env(gym_env_name: str, cfg: Configuration) -> StepRewardDoneHandler:\r\
    \n\r\n    if gym_env_name == 'Acrobot-v1':\r\n        handler = AcrobotStepHandler(cfg)\r\
    \n    elif gym_env_name == 'CartPole-v1':\r\n        handler = CartPoleStepHandler(cfg)\r\
    \n    elif gym_env_name == 'MountainCarContinuous-v0':\r\n        handler = ContinuousMountainCarStepHandler(cfg)\r\
    \n    elif gym_env_name == 'MountainCar-v0':\r\n        handler = MountainCarStepHandler(cfg)\r\
    \n    elif gym_env_name == 'Pendulum-v0':\r\n        handler = PendulumStepHandler(cfg)\r\
    \n    else:\r\n        raise NotImplementedError(f'No support for this gym env:\
    \ {gym_env_name}')\r\n\r\n    return handler"
- source_sentence: create list of spiders that obeys the visible projects list, through
    use of the spider selection menu
  sentences:
  - "def create_spiders_list():\n    spiders_lst = [obj for obj in globals().values()\
    \ if\n                   inspect.isclass(obj) and str(obj).split('.')[2] == 'spiders'\
    \ and 'BaseSpider' not in str(obj)]\n    visible_projects = find_visible_projects()\n\
    \    spiders_dict = {i.split('.')[0]: [obj for obj in spiders_lst if i.split('.')[0]\
    \ in str(obj)] for i in\n                    os.listdir('HousingPriceScraper/HousingPriceScraper/spiders/SpiderGroups')[:-1]\
    \ if i.split('.')[0] in visible_projects}\n    if len(list(spiders_dict.keys()))\
    \ > 0:\n        spiders_lst = select_spiders(spiders_dict)\n    else:\n      \
    \  print('There are no visible projects, got to set_visible_projects to set defaults')\n\
    \        return False\n    return spiders_lst"
  - "def game(self, game_id=None, secret=None):\n        if game_id is not None:\n\
    \            self.game_id = game_id\n\n        if secret is not None:\n      \
    \      self.secret = secret\n\n        return self.game_id, self.secret"
  - "def instantiate_pipelines(settings, simulator_settings):\n    pipelines = []\n\
    \    # lock to manage race parallel processes race conditions \n    lock = Lock()\n\
    \n    logger.info(\"\\nVALIDATING PIPELINES\\n\")\n    for p_idx, pipeline_settings\
    \ in enumerate(settings.runs):\n\n        # turn a pipeline off by specifying\
    \ num_runs as 0\n        num_runs = pipeline_settings.get(\"num_runs\", 0)\n\n\
    \        # start_idx determines the first dataset name's starting idx\n      \
    \  start_idx = pipeline_settings.get(\"start_idx\", 0)\n\n        if num_runs:\n\
    \            logger.info(\"Validating run: {}\\n\".format(p_idx))\n        else:\n\
    \            logger.info(\"Skipping run: {}\\n\".format(p_idx))\n            \n\
    \        for idx in range(start_idx, start_idx + num_runs):           \n     \
    \       logger.info(\"Pipeline sub index: {}\\n\".format(idx))\n            #\
    \ class factory and instantiate pipeline object\n            Pipeline = pipeline_factory(pipeline_settings[\"\
    pipeline_name\"])\n            p = Pipeline(pipeline_settings, idx, simulator_settings)\n\
    \            \n            # give each pipeline an idependent logger\n       \
    \     log_name = \"dSim_{}\".format(p.pipeline_settings[\"dataset_name\"])\n \
    \           log_path = os.path.join(p.pipeline_settings[\"outdir\"],\n       \
    \                             p.pipeline_settings[\"dataset_name\"]+'.log')\n\
    \            fh = logging.FileHandler(log_path, mode='w')\n            fh.setLevel(logging.DEBUG)\n\
    \            format = \"%(asctime)-6s: %(name)s - %(levelname)s - %(message)s\"\
    \n            fmt = logging.Formatter(format)\n            fh.setFormatter(fmt)\n\
    \            local_logger = logging.getLogger(log_name)\n            local_logger.addHandler(fh)\n\
    \            logger.info(\"Init local logging: {}\".format(log_path))\n      \
    \      p.logger = local_logger\n\n            # pipeline/ dataset directory\n\
    \            p.pipeline_settings[\"lock\"] = lock\n\n            # validate all\
    \ submodules for each pipeline is ready (use local logger) \n            p.instantiate_modules()\n\
    \n            # append to list of instantiated pipelines\n            pipelines.append(p)\n\
    \    return pipelines"
datasets:
- CocoRoF/massive_triplet_v3
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision 744169034862c8eec56628663995004342e4e449 -->
- **Maximum Sequence Length:** 32768 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen3Model 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/POLAR-Qwen3-0.6b-linq-gist")
# Run inference
sentences = [
    'create list of spiders that obeys the visible projects list, through use of the spider selection menu',
    "def create_spiders_list():\n    spiders_lst = [obj for obj in globals().values() if\n                   inspect.isclass(obj) and str(obj).split('.')[2] == 'spiders' and 'BaseSpider' not in str(obj)]\n    visible_projects = find_visible_projects()\n    spiders_dict = {i.split('.')[0]: [obj for obj in spiders_lst if i.split('.')[0] in str(obj)] for i in\n                    os.listdir('HousingPriceScraper/HousingPriceScraper/spiders/SpiderGroups')[:-1] if i.split('.')[0] in visible_projects}\n    if len(list(spiders_dict.keys())) > 0:\n        spiders_lst = select_spiders(spiders_dict)\n    else:\n        print('There are no visible projects, got to set_visible_projects to set defaults')\n        return False\n    return spiders_lst",
    'def instantiate_pipelines(settings, simulator_settings):\n    pipelines = []\n    # lock to manage race parallel processes race conditions \n    lock = Lock()\n\n    logger.info("\\nVALIDATING PIPELINES\\n")\n    for p_idx, pipeline_settings in enumerate(settings.runs):\n\n        # turn a pipeline off by specifying num_runs as 0\n        num_runs = pipeline_settings.get("num_runs", 0)\n\n        # start_idx determines the first dataset name\'s starting idx\n        start_idx = pipeline_settings.get("start_idx", 0)\n\n        if num_runs:\n            logger.info("Validating run: {}\\n".format(p_idx))\n        else:\n            logger.info("Skipping run: {}\\n".format(p_idx))\n            \n        for idx in range(start_idx, start_idx + num_runs):           \n            logger.info("Pipeline sub index: {}\\n".format(idx))\n            # class factory and instantiate pipeline object\n            Pipeline = pipeline_factory(pipeline_settings["pipeline_name"])\n            p = Pipeline(pipeline_settings, idx, simulator_settings)\n            \n            # give each pipeline an idependent logger\n            log_name = "dSim_{}".format(p.pipeline_settings["dataset_name"])\n            log_path = os.path.join(p.pipeline_settings["outdir"],\n                                    p.pipeline_settings["dataset_name"]+\'.log\')\n            fh = logging.FileHandler(log_path, mode=\'w\')\n            fh.setLevel(logging.DEBUG)\n            format = "%(asctime)-6s: %(name)s - %(levelname)s - %(message)s"\n            fmt = logging.Formatter(format)\n            fh.setFormatter(fmt)\n            local_logger = logging.getLogger(log_name)\n            local_logger.addHandler(fh)\n            logger.info("Init local logging: {}".format(log_path))\n            p.logger = local_logger\n\n            # pipeline/ dataset directory\n            p.pipeline_settings["lock"] = lock\n\n            # validate all submodules for each pipeline is ready (use local logger) \n            p.instantiate_modules()\n\n            # append to list of instantiated pipelines\n            pipelines.append(p)\n    return pipelines',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### massive_triplet_v3

* Dataset: [massive_triplet_v3](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3) at [51266de](https://huggingface.co/datasets/CocoRoF/massive_triplet_v3/tree/51266de17705934d628da7d4d9f74cc5f7b0b791)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | positive                                                                             | negative                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               | string                                                                               |
  | details | <ul><li>min: 6 tokens</li><li>mean: 22.57 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 132.85 tokens</li><li>max: 1160 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 122.89 tokens</li><li>max: 1758 tokens</li></ul> |
* Samples:
  | query                                                                                                                        | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:-----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>방학기간에 소외지역의 청소년을 대상으로 청춘누리 봉사단이 할 수 있는 캠프의 이름은 뭐야</code>                                                               | <code>주요 수상기관 교육기부프로그램 개요<br>4. 대학생 동아리 「청춘누리 봉사단」<br>□ 청춘누리축제<br>◦ (참가대상) 전국 유치원, 초·중·고등학생<br>◦ (활동내역) 대학생들이 운영하는 교육기부활동을 청소년들이 직접 체험해봄으로써 학생들이 사고력, 창의력 향상을 도모하고 자신의 꿈을 펼칠 수 있는 장 마련<br>◦ (주요성과) 대학생들의 교육기부에 대한 전반적인 이해를 돕고 교육 기부 활동의 우수성 홍보<br>□ 청춘누리봉사단과 함께하는 교육기부(쏙쏙캠프, 함성소리)<br>◦ (참가대상) 전국의 초·중학생<br>◦ (활동내역)<br>- 쏙쏙캠프 : 방학을 이용하여 상대적으로 교육기부 혜택이 적은 소외 지역을 방문하여 창의력 체험, 진로체험 등을 제공, 배움의 기회 균등 및 꿈을 찾아주는 활동 전개<br>- 함성소리 : 학기중 토요일마다 수도권에 있는 청소년 대상으로 꿈을 설계하고 지원하는 활동 전개<br>◦ (주요성과) 소외지역 청소년 대상 배움의 기회를 제공하고 대학생들의 봉사활동을 장려하여 많은 청소년 대상 멘토 활동 전개</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>개도국에 IT나눔을 실천한 청년들과 아름다운 동행<br>□ 미래창조과학부(장관 최문기)와 한국정보화진흥원(원장 장광수)은 12월 18일(수) 오후 2시 10분 과천과학관에서 「2013년도 월드프렌즈 IT봉사단 귀국보고대회」(이하, IT봉사단 귀국보고대회)를 개최하였다.<br>o 정부는 2001년부터 현재까지 전 세계 70여개 개도국에 5,158명의 IT봉사단을 파견한 바 있으며, 「IT봉사단 귀국보고대회」는 매년 개도국에서 활동하고 온 봉사단원들이 서로의 경험을 공유하고 글로벌 역량을 배양하는 ‘소통'과 ‘협력‘의 장(場)으로 운영되고 있다.<br>※ 월드프렌즈(World Frends Korea, WFK) : 우리나라 해외봉사단사업 통합브랜드<br>□ 이번 「IT봉사단 귀국보고대회」에는 30개국에 파견되었던 552명의 봉사단원 중 약 300여명의 봉사단원이 참석했으며, 윤종록 제2차관과 주한 외교사절(인도네시아 대사, 코스타리카 대사, 네팔 대사 등)이 참석해 세계의 오지를 누비고 온 봉사단원들을 격려했다.<br>o 윤종록 제2차관은 IT봉사단원들에게“귀한경험을 활용하여 대한민국의 이름을 빛내는 사람이 되기를 바란다”는 당부와 함께“정부는 여러분과 같은 젊은이들이 세계를 무대로 능력을 마음껏 발휘할 수 있는 글로벌 플랫폼을 구축하는데 노력할 계획”이라고 덧붙였다.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  | <code>Loads sensor filters from an Excel file. Both new style XLSX and oldstyle XLS formats are supported.</code>            | <code>def load_sensor_filters_excel(filename, normalise=False, sheet_names=None):<br><br>    sensor_filters = {}<br>    with pd.ExcelFile(filename) as excel_file:<br>        # default is all sheets<br>        if not sheet_names:<br>            sheet_names = excel_file.sheet_names<br><br>        for sheet in sheet_names:<br>            try:<br>                dataframe = excel_file.parse(<br>                    sheet, index_col=0<br>                )  # the sheet as a DataFrame<br>                # OK, we have the data frame. Let's process it...<br>                if not _validate_filter_dataframe(dataframe):<br>                    continue<br><br>                if normalise:<br>                    dataframe = _normalise_dataframe(dataframe)<br><br>                sensor_filters[sheet] = (<br>                    np.array(dataframe.index),<br>                    dataframe.values.transpose(),<br>                )<br><br>            except xlrd.biffh.XLRDError:<br>                continue<br>            # except xlrd.biffh.XLRDError as xlrd_error:<br>            # TODO: log wa...</code> | <code>def convert_csv(fname):<br><br>    # Make sure this is an Excel file.<br>    if (not is_excel_file(fname)):<br><br>        # Not Excel, so no sheets.<br>        return []<br><br>    # Run soffice in listening mode if it is not already running.<br>    run_soffice()<br>    <br>    # TODO: Make sure soffice is running in listening mode.<br>    # <br>    <br>    # Connect to the local LibreOffice server.<br>    context = connect(Socket(HOST, PORT))<br><br>    # Load the Excel sheet.<br>    component = get_component(fname, context)<br><br>    # Iterate on all the sheets in the spreadsheet.<br>    controller = component.getCurrentController()<br>    sheets = component.getSheets()<br>    enumeration = sheets.createEnumeration()<br>    r = []<br>    pos = 0<br>    if sheets.getCount() > 0:<br>        while enumeration.hasMoreElements():<br><br>            # Move to next sheet.<br>            sheet = enumeration.nextElement()<br>            name = sheet.getName()<br>            if (name.count(" ") > 10):<br>                name = name.replace(" ", "")<br>            name = fix_file_name(name)<br> ...</code> |
  | <code>Create an additional feature to metadata by counting number of occurrences in data, for a specific element_type</code> | <code>def create_count_features(metadata, element_type, data, grp_feat, res_feat, feature_suffix):<br>    feature_name = 'n_'+ element_type + '_modif' + feature_suffix<br>    newfeature = (data.groupby([grp_feat])[res_feat]<br>                  .count()<br>                  .reset_index()<br>                  .fillna(0))<br>    newfeature.columns = [grp_feat, feature_name]<br>    metadata = pd.merge(metadata, newfeature, on=grp_feat, how="outer").fillna(0)<br>    return metadata</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>def test(self):<br>        count = Counter()<br>        for example in self.testing_set:<br>            classification = self.classify(example.attributes)<br><br>            if example.CLASS and classification:<br>                count['TP'] += 1<br>            elif not example.CLASS and classification:<br>                count['FP'] += 1<br>            elif not example.CLASS and not classification:<br>                count['TN'] += 1<br>            elif example.CLASS and not classification:<br>                count['FN'] += 1<br>        return count</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 40960, 'do_lower_case': False}) with Transformer model: Qwen3Model 
    (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `overwrite_output_dir`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-06
- `weight_decay`: 0.01
- `adam_beta2`: 0.99
- `adam_epsilon`: 1e-07
- `max_grad_norm`: 0.3
- `num_train_epochs`: 1.0
- `warmup_ratio`: 0.1
- `dataloader_num_workers`: 16
- `hub_model_id`: CocoRoF/POLAR-Qwen3-0.6b-linq-gist
- `prompts`: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-06
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.99
- `adam_epsilon`: 1e-07
- `max_grad_norm`: 0.3
- `num_train_epochs`: 1.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 16
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: CocoRoF/POLAR-Qwen3-0.6b-linq-gist
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0082 | 1    | 2.0699        |
| 0.0164 | 2    | 1.7826        |
| 0.0246 | 3    | 1.9799        |
| 0.0328 | 4    | 8.1569        |
| 0.0410 | 5    | 4.641         |
| 0.0492 | 6    | 4.847         |
| 0.0573 | 7    | 8.2247        |
| 0.0655 | 8    | 8.9525        |
| 0.0737 | 9    | 4.2975        |
| 0.0819 | 10   | 6.3088        |
| 0.0901 | 11   | 5.6983        |
| 0.0983 | 12   | 4.3867        |
| 0.1065 | 13   | 6.1817        |
| 0.1147 | 14   | 6.0226        |
| 0.1229 | 15   | 15.2869       |
| 0.1311 | 16   | 11.8965       |
| 0.1393 | 17   | 9.4219        |
| 0.1475 | 18   | 5.9216        |
| 0.1557 | 19   | 6.5436        |
| 0.1639 | 20   | 5.4599        |
| 0.1720 | 21   | 4.6468        |
| 0.1802 | 22   | 4.9366        |
| 0.1884 | 23   | 4.5267        |
| 0.1966 | 24   | 4.9044        |
| 0.2048 | 25   | 4.9682        |
| 0.2130 | 26   | 4.1537        |
| 0.2212 | 27   | 4.0729        |
| 0.2294 | 28   | 3.9093        |
| 0.2376 | 29   | 3.3863        |
| 0.2458 | 30   | 3.9228        |
| 0.2540 | 31   | 2.8689        |
| 0.2622 | 32   | 3.3243        |
| 0.2704 | 33   | 2.7494        |
| 0.2785 | 34   | 3.108         |
| 0.2867 | 35   | 3.1585        |
| 0.2949 | 36   | 3.2985        |
| 0.3031 | 37   | 2.7137        |
| 0.3113 | 38   | 2.8327        |
| 0.3195 | 39   | 2.7932        |
| 0.3277 | 40   | 3.038         |
| 0.3359 | 41   | 2.769         |
| 0.3441 | 42   | 2.7036        |
| 0.3523 | 43   | 3.1873        |
| 0.3605 | 44   | 2.5984        |
| 0.3687 | 45   | 2.6836        |
| 0.3769 | 46   | 3.0616        |
| 0.3850 | 47   | 2.87          |
| 0.3932 | 48   | 2.5225        |
| 0.4014 | 49   | 2.3775        |
| 0.4096 | 50   | 2.3407        |
| 0.4178 | 51   | 2.6313        |
| 0.4260 | 52   | 2.6966        |
| 0.4342 | 53   | 2.3673        |
| 0.4424 | 54   | 2.4391        |
| 0.4506 | 55   | 2.5654        |
| 0.4588 | 56   | 2.2967        |
| 0.4670 | 57   | 2.4656        |
| 0.4752 | 58   | 2.2497        |
| 0.4834 | 59   | 2.3793        |
| 0.4916 | 60   | 2.4427        |
| 0.4997 | 61   | 2.2327        |
| 0.5079 | 62   | 2.04          |
| 0.5161 | 63   | 2.2881        |
| 0.5243 | 64   | 2.0218        |
| 0.5325 | 65   | 2.3258        |
| 0.5407 | 66   | 2.1217        |
| 0.5489 | 67   | 1.9639        |
| 0.5571 | 68   | 2.1681        |
| 0.5653 | 69   | 2.1941        |
| 0.5735 | 70   | 2.1217        |
| 0.5817 | 71   | 2.1097        |
| 0.5899 | 72   | 2.1242        |
| 0.5981 | 73   | 1.9071        |
| 0.6062 | 74   | 1.8552        |
| 0.6144 | 75   | 1.8398        |
| 0.6226 | 76   | 1.9429        |
| 0.6308 | 77   | 1.6457        |
| 0.6390 | 78   | 1.656         |
| 0.6472 | 79   | 1.6597        |
| 0.6554 | 80   | 1.8188        |
| 0.6636 | 81   | 2.0348        |
| 0.6718 | 82   | 1.9511        |
| 0.6800 | 83   | 1.8009        |
| 0.6882 | 84   | 1.8279        |
| 0.6964 | 85   | 1.7993        |
| 0.7046 | 86   | 1.782         |
| 0.7127 | 87   | 1.6168        |
| 0.7209 | 88   | 1.7357        |
| 0.7291 | 89   | 1.5588        |
| 0.7373 | 90   | 1.6574        |
| 0.7455 | 91   | 1.7124        |
| 0.7537 | 92   | 1.7205        |
| 0.7619 | 93   | 1.7439        |
| 0.7701 | 94   | 1.4042        |
| 0.7783 | 95   | 1.547         |
| 0.7865 | 96   | 1.5815        |
| 0.7947 | 97   | 1.4141        |
| 0.8029 | 98   | 1.3568        |
| 0.8111 | 99   | 1.5084        |
| 0.8193 | 100  | 1.4027        |
| 0.8274 | 101  | 1.4902        |
| 0.8356 | 102  | 1.317         |
| 0.8438 | 103  | 1.8041        |
| 0.8520 | 104  | 1.4397        |
| 0.8602 | 105  | 1.3406        |
| 0.8684 | 106  | 1.5127        |
| 0.8766 | 107  | 1.2449        |
| 0.8848 | 108  | 1.4508        |
| 0.8930 | 109  | 1.4171        |
| 0.9012 | 110  | 1.626         |
| 0.9094 | 111  | 1.285         |
| 0.9176 | 112  | 1.2682        |
| 0.9258 | 113  | 1.5178        |
| 0.9339 | 114  | 1.3686        |
| 0.9421 | 115  | 1.227         |
| 0.9503 | 116  | 1.3685        |
| 0.9585 | 117  | 1.3253        |
| 0.9667 | 118  | 1.0893        |
| 0.9749 | 119  | 1.1753        |
| 0.9831 | 120  | 1.252         |
| 0.9913 | 121  | 1.2304        |
| 0.9995 | 122  | 1.1111        |

</details>

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->