Create train_model.py
Browse files- train_model.py +23 -0
train_model.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import Trainer, TrainingArguments
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
def train_model():
|
| 6 |
+
training_args = TrainingArguments(
|
| 7 |
+
output_dir="./checkpoints",
|
| 8 |
+
num_train_epochs=100,
|
| 9 |
+
per_device_train_batch_size=4,
|
| 10 |
+
gradient_accumulation_steps=4,
|
| 11 |
+
learning_rate=1e-4,
|
| 12 |
+
fp16=True,
|
| 13 |
+
save_steps=500,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
dataset = load_dataset("dance_videos_dataset")
|
| 17 |
+
trainer = Trainer(
|
| 18 |
+
model=model,
|
| 19 |
+
args=training_args,
|
| 20 |
+
train_dataset=dataset,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
trainer.train()
|