sd35-training

This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-large.

The main validation prompt used during training was:

k4s4, Minimalist and geometric style vector logo icon featuring three stacked, angular shapes resembling an abstract arrow pointing downward. The icon has a symmetrical design with clean lines and a bold, solid blue color palette. Ideal for conveying direction, precision, and modern simplicity

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 512x512
  • Skip-layer guidance: skip_guidance_layers=[7, 8, 9],

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
k4s4, Minimalist and geometric style vector logo icon featuring three stacked, angular shapes resembling an abstract arrow pointing downward. The icon has a symmetrical design with clean lines and a bold, solid blue color palette. Ideal for conveying direction, precision, and modern simplicity
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 26
  • Training steps: 3500
  • Learning rate: 0.0001
    • Learning rate schedule: polynomial
    • Warmup steps: 100
  • Max grad norm: 2.0
  • Effective batch size: 8
    • Micro-batch size: 8
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: flow-matching (extra parameters=['shift=1.0', 'flow_use_uniform_schedule'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 10.0%

LyCORIS Config:

{
    "algo": "lokr",
    "multiplier": 1.0,
    "full_matrix": true,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}

Datasets

logo_icons

  • Repeats: 0
  • Total number of images: 1036
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_repo_id = 'Christian2903/sd35-training'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "k4s4, Minimalist and geometric style vector logo icon featuring three stacked, angular shapes resembling an abstract arrow pointing downward. The icon has a symmetrical design with clean lines and a bold, solid blue color palette. Ideal for conveying direction, precision, and modern simplicity"
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=512,
    height=512,
    guidance_scale=3.0,
    skip_guidance_layers=[7, 8, 9],
).images[0]
image.save("output.png", format="PNG")
Downloads last month
88
Inference Providers NEW
Examples

Model tree for Christian2903/sd35-training

Adapter
(244)
this model