--- base_model: openai/whisper-tiny language: - ja library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Japanese Combine 4k - Chee Li results: [] --- # Whisper Tiny Japanese Combine 4k - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Meta JSON Japanese Dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.6167 - Wer: 374.3034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.5437 | 3.8911 | 1000 | 2.4311 | 494.4272 | | 2.0028 | 7.7821 | 2000 | 2.0321 | 427.0898 | | 1.5918 | 11.6732 | 3000 | 1.7293 | 395.9752 | | 1.4102 | 15.5642 | 4000 | 1.6167 | 374.3034 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1