Upload 2 files
Browse files- utils/data_loader.py +5 -5
- utils/esm_utils.py +6 -5
utils/data_loader.py
CHANGED
|
@@ -7,7 +7,7 @@ import config
|
|
| 7 |
|
| 8 |
class ProteinDataset(Dataset):
|
| 9 |
def __init__(self, csv_file, tokenizer, model):
|
| 10 |
-
self.data = pd.read_csv(csv_file)
|
| 11 |
self.tokenizer = tokenizer
|
| 12 |
self.model = model
|
| 13 |
|
|
@@ -30,11 +30,11 @@ def collate_fn(batch):
|
|
| 30 |
return latents_padded, attention_mask_padded
|
| 31 |
|
| 32 |
def get_dataloaders(config):
|
| 33 |
-
tokenizer,
|
| 34 |
|
| 35 |
-
train_dataset = ProteinDataset(config.Loader.DATA_PATH + "/train.csv", tokenizer,
|
| 36 |
-
val_dataset = ProteinDataset(config.Loader.DATA_PATH + "/val.csv", tokenizer,
|
| 37 |
-
test_dataset = ProteinDataset(config.Loader.DATA_PATH + "/test.csv", tokenizer,
|
| 38 |
|
| 39 |
train_loader = DataLoader(train_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=True, collate_fn=collate_fn)
|
| 40 |
val_loader = DataLoader(val_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=False, collate_fn=collate_fn)
|
|
|
|
| 7 |
|
| 8 |
class ProteinDataset(Dataset):
|
| 9 |
def __init__(self, csv_file, tokenizer, model):
|
| 10 |
+
self.data = pd.read_csv(csv_file).head(4)
|
| 11 |
self.tokenizer = tokenizer
|
| 12 |
self.model = model
|
| 13 |
|
|
|
|
| 30 |
return latents_padded, attention_mask_padded
|
| 31 |
|
| 32 |
def get_dataloaders(config):
|
| 33 |
+
tokenizer, masked_model, embedding_model = load_esm2_model(config.MODEL_NAME)
|
| 34 |
|
| 35 |
+
train_dataset = ProteinDataset(config.Loader.DATA_PATH + "/train.csv", tokenizer, embedding_model)
|
| 36 |
+
val_dataset = ProteinDataset(config.Loader.DATA_PATH + "/val.csv", tokenizer, embedding_model)
|
| 37 |
+
test_dataset = ProteinDataset(config.Loader.DATA_PATH + "/test.csv", tokenizer, embedding_model)
|
| 38 |
|
| 39 |
train_loader = DataLoader(train_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=True, collate_fn=collate_fn)
|
| 40 |
val_loader = DataLoader(val_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=False, collate_fn=collate_fn)
|
utils/esm_utils.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
import torch
|
| 2 |
-
|
|
|
|
| 3 |
|
| 4 |
def load_esm2_model(model_name):
|
| 5 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
def get_latents(model, tokenizer, sequence):
|
| 10 |
inputs = tokenizer(sequence, return_tensors="pt")
|
| 11 |
with torch.no_grad():
|
| 12 |
outputs = model(**inputs)
|
| 13 |
-
return outputs.last_hidden_state.squeeze(0)
|
| 14 |
-
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import config
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM
|
| 4 |
|
| 5 |
def load_esm2_model(model_name):
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
masked_model = AutoModelForMaskedLM.from_pretrained(model_name)
|
| 8 |
+
embedding_model = AutoModel.from_pretrained(model_name)
|
| 9 |
+
return tokenizer, masked_model, embedding_model
|
| 10 |
|
| 11 |
def get_latents(model, tokenizer, sequence):
|
| 12 |
inputs = tokenizer(sequence, return_tensors="pt")
|
| 13 |
with torch.no_grad():
|
| 14 |
outputs = model(**inputs)
|
| 15 |
+
return outputs.last_hidden_state.squeeze(0)
|
|
|