nRuaif commited on
Commit
c106cb5
·
1 Parent(s): a550e19

Upload folder using huggingface_hub

Browse files
checkpoint-284/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mixtral-8x7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.0
checkpoint-284/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "gate",
20
+ "w1",
21
+ "v_proj",
22
+ "k_proj",
23
+ "w3",
24
+ "o_proj",
25
+ "q_proj",
26
+ "w2"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-284/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7de8dbe58c960a8a3e90f5ebe902b4830193773274caf5e1c44cf80fdf5a71f7
3
+ size 969176736
checkpoint-284/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step284
checkpoint-284/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70c0b62bd953493d0675c34feecb6cb4564541e1efc60bb1704ce38255044908
3
+ size 15607
checkpoint-284/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:241736953f399f6929c6ad898eaf28227b020331cba8da2c020aaaff41594b10
3
+ size 15607
checkpoint-284/trainer_state.json ADDED
@@ -0,0 +1,1725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5026548672566372,
5
+ "eval_steps": 500,
6
+ "global_step": 284,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 4.807692307692308e-06,
14
+ "loss": 2.0125,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 9.615384615384616e-06,
20
+ "loss": 1.9307,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 1.4423076923076924e-05,
26
+ "loss": 1.6104,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 1.923076923076923e-05,
32
+ "loss": 1.9208,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 2.4038461538461542e-05,
38
+ "loss": 1.7502,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 2.884615384615385e-05,
44
+ "loss": 2.2112,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 3.365384615384615e-05,
50
+ "loss": 1.5895,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 3.846153846153846e-05,
56
+ "loss": 1.9856,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 4.3269230769230766e-05,
62
+ "loss": 2.1565,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 4.8076923076923084e-05,
68
+ "loss": 1.6874,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 5.288461538461539e-05,
74
+ "loss": 1.614,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 5.76923076923077e-05,
80
+ "loss": 1.8226,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 6.25e-05,
86
+ "loss": 1.4058,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 6.73076923076923e-05,
92
+ "loss": 1.4717,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 7.211538461538461e-05,
98
+ "loss": 1.5335,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 7.692307692307693e-05,
104
+ "loss": 2.1125,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 8.173076923076923e-05,
110
+ "loss": 1.9451,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 8.653846153846153e-05,
116
+ "loss": 1.7484,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 9.134615384615384e-05,
122
+ "loss": 1.7573,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 9.615384615384617e-05,
128
+ "loss": 2.1968,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.00010096153846153847,
134
+ "loss": 1.7941,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.00010576923076923077,
140
+ "loss": 1.8685,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.00011057692307692308,
146
+ "loss": 2.0065,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0001153846153846154,
152
+ "loss": 1.9018,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.0001201923076923077,
158
+ "loss": 2.0752,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.000125,
164
+ "loss": 1.716,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.00012980769230769233,
170
+ "loss": 1.6542,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 0.0001346153846153846,
176
+ "loss": 1.7198,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 0.00013942307692307694,
182
+ "loss": 1.8383,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.00014423076923076922,
188
+ "loss": 1.6938,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.00014903846153846155,
194
+ "loss": 1.9142,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.00015384615384615385,
200
+ "loss": 1.7715,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 0.00015865384615384616,
206
+ "loss": 1.467,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 0.00016346153846153846,
212
+ "loss": 1.7608,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 0.0001682692307692308,
218
+ "loss": 1.5371,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.00017307692307692307,
224
+ "loss": 1.6211,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 0.0001778846153846154,
230
+ "loss": 1.7275,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 0.00018269230769230767,
236
+ "loss": 1.7063,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 0.0001875,
242
+ "loss": 1.9367,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 0.00019230769230769233,
248
+ "loss": 1.6608,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 0.0001971153846153846,
254
+ "loss": 1.9212,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 0.00020192307692307694,
260
+ "loss": 1.611,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 0.00020673076923076922,
266
+ "loss": 1.8582,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 0.00021153846153846155,
272
+ "loss": 1.5658,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 0.00021634615384615385,
278
+ "loss": 1.8543,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 0.00022115384615384616,
284
+ "loss": 1.7291,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 0.00022596153846153846,
290
+ "loss": 1.9411,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.08,
295
+ "learning_rate": 0.0002307692307692308,
296
+ "loss": 1.8138,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 0.00023557692307692307,
302
+ "loss": 1.708,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 0.0002403846153846154,
308
+ "loss": 1.675,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 0.0002451923076923077,
314
+ "loss": 1.658,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 0.00025,
320
+ "loss": 1.9797,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 0.000249997656075194,
326
+ "loss": 1.5857,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 0.0002499906243886798,
332
+ "loss": 1.8837,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 0.00024997890520416535,
338
+ "loss": 1.8022,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 0.0002499624989611527,
344
+ "loss": 1.9101,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 0.00024994140627492207,
350
+ "loss": 1.5614,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 0.00024991562793650793,
356
+ "loss": 1.8988,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 0.0002498851649126703,
362
+ "loss": 1.7089,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 0.00024985001834585763,
368
+ "loss": 1.7782,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 0.0002498101895541645,
374
+ "loss": 1.5338,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 0.0002497656800312821,
380
+ "loss": 1.6484,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 0.0002497164914464419,
386
+ "loss": 1.733,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 0.00024966262564435343,
392
+ "loss": 1.8893,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 0.000249604084645135,
398
+ "loss": 1.6361,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 0.0002495408706442377,
404
+ "loss": 1.9827,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 0.00024947298601236343,
410
+ "loss": 1.6801,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 0.0002494004332953758,
416
+ "loss": 1.9678,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 0.00024932321521420456,
422
+ "loss": 1.9245,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 0.0002492413346647437,
428
+ "loss": 1.5254,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 0.00024915479471774286,
434
+ "loss": 1.7283,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 0.00024906359861869216,
440
+ "loss": 1.9968,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 0.0002489677497877003,
446
+ "loss": 1.6559,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 0.0002488672518193665,
452
+ "loss": 1.5518,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.13,
457
+ "learning_rate": 0.0002487621084826458,
458
+ "loss": 1.6201,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 0.0002486523237207072,
464
+ "loss": 1.7592,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 0.00024853790165078654,
470
+ "loss": 1.5929,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 0.0002484188465640313,
476
+ "loss": 1.4261,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 0.0002482951629253403,
482
+ "loss": 1.8929,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 0.0002481668553731959,
488
+ "loss": 1.5752,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.14,
493
+ "learning_rate": 0.00024803392871949013,
494
+ "loss": 1.8596,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 0.00024789638794934436,
500
+ "loss": 1.838,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 0.00024775423822092214,
506
+ "loss": 1.7938,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 0.0002476074848652358,
512
+ "loss": 1.6448,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 0.0002474561333859467,
518
+ "loss": 1.7674,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 0.00024730018945915864,
524
+ "loss": 1.6526,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.15,
529
+ "learning_rate": 0.000247139658933205,
530
+ "loss": 1.6921,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 0.00024697454782842944,
536
+ "loss": 1.8208,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 0.0002468048623369603,
542
+ "loss": 1.9528,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 0.00024663060882247796,
548
+ "loss": 1.8188,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 0.00024645179381997673,
554
+ "loss": 1.921,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.16,
559
+ "learning_rate": 0.00024626842403551927,
560
+ "loss": 1.9332,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.16,
565
+ "learning_rate": 0.0002460805063459853,
566
+ "loss": 1.967,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 0.00024588804779881383,
572
+ "loss": 1.4963,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 0.00024569105561173866,
578
+ "loss": 1.6944,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 0.00024548953717251783,
584
+ "loss": 1.9083,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 0.0002452835000386563,
590
+ "loss": 1.7368,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.17,
595
+ "learning_rate": 0.000245072951937123,
596
+ "loss": 1.6183,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 0.00024485790076406047,
602
+ "loss": 1.7917,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 0.00024463835458448925,
608
+ "loss": 2.1032,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 0.0002444143216320052,
614
+ "loss": 1.8451,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 0.0002441858103084705,
620
+ "loss": 1.7479,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.18,
625
+ "learning_rate": 0.000243952829183699,
626
+ "loss": 1.8158,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.18,
631
+ "learning_rate": 0.00024371538699513443,
632
+ "loss": 1.9275,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 0.00024347349264752303,
638
+ "loss": 1.7759,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 0.00024322715521257933,
644
+ "loss": 2.0328,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 0.00024297638392864617,
650
+ "loss": 1.8839,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 0.00024272118820034804,
656
+ "loss": 1.8443,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.19,
661
+ "learning_rate": 0.00024246157759823855,
662
+ "loss": 1.9779,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.19,
667
+ "learning_rate": 0.00024219756185844132,
668
+ "loss": 1.6495,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 0.00024192915088228512,
674
+ "loss": 1.6645,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 0.00024165635473593215,
680
+ "loss": 1.4214,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 0.00024137918365000095,
686
+ "loss": 1.6603,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.2,
691
+ "learning_rate": 0.00024109764801918244,
692
+ "loss": 1.4227,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.2,
697
+ "learning_rate": 0.0002408117584018502,
698
+ "loss": 1.3033,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 0.00024052152551966457,
704
+ "loss": 2.0312,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 0.00024022696025717023,
710
+ "loss": 1.8867,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 0.00023992807366138847,
716
+ "loss": 1.6906,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 0.00023962487694140263,
722
+ "loss": 1.595,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.21,
727
+ "learning_rate": 0.00023931738146793763,
728
+ "loss": 1.5583,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.21,
733
+ "learning_rate": 0.00023900559877293383,
734
+ "loss": 1.9068,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 0.00023868954054911428,
740
+ "loss": 1.4536,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 0.00023836921864954635,
746
+ "loss": 1.7105,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 0.0002380446450871972,
752
+ "loss": 1.4355,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.22,
757
+ "learning_rate": 0.00023771583203448322,
758
+ "loss": 1.7782,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.22,
763
+ "learning_rate": 0.00023738279182281352,
764
+ "loss": 1.9977,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.22,
769
+ "learning_rate": 0.00023704553694212752,
770
+ "loss": 1.5658,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 0.00023670408004042653,
776
+ "loss": 1.5389,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 0.00023635843392329938,
782
+ "loss": 1.7435,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 0.00023600861155344223,
788
+ "loss": 1.5706,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.23,
793
+ "learning_rate": 0.00023565462605017228,
794
+ "loss": 1.8396,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.23,
799
+ "learning_rate": 0.00023529649068893598,
800
+ "loss": 1.8073,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 0.00023493421890081112,
806
+ "loss": 1.9954,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 0.00023456782427200295,
812
+ "loss": 1.9553,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 0.0002341973205433348,
818
+ "loss": 1.2249,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.24,
823
+ "learning_rate": 0.0002338227216097328,
824
+ "loss": 1.8021,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.24,
829
+ "learning_rate": 0.00023344404151970464,
830
+ "loss": 1.8086,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.24,
835
+ "learning_rate": 0.00023306129447481282,
836
+ "loss": 1.4283,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 0.00023267449482914203,
842
+ "loss": 1.8477,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 0.0002322836570887608,
848
+ "loss": 1.3233,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 0.0002318887959111776,
854
+ "loss": 1.7511,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.25,
859
+ "learning_rate": 0.0002314899261047909,
860
+ "loss": 1.9737,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.25,
865
+ "learning_rate": 0.00023108706262833407,
866
+ "loss": 1.6347,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.25,
871
+ "learning_rate": 0.00023068022059031425,
872
+ "loss": 1.9142,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 0.00023026941524844572,
878
+ "loss": 1.7408,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 0.00022985466200907783,
884
+ "loss": 1.3576,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 0.00022943597642661705,
890
+ "loss": 1.6058,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.26,
895
+ "learning_rate": 0.00022901337420294378,
896
+ "loss": 1.6575,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.26,
901
+ "learning_rate": 0.0002285868711868233,
902
+ "loss": 1.3605,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 0.00022815648337331168,
908
+ "loss": 1.4417,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.27,
913
+ "learning_rate": 0.00022772222690315563,
914
+ "loss": 1.684,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.27,
919
+ "learning_rate": 0.0002272841180621874,
920
+ "loss": 1.8368,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.27,
925
+ "learning_rate": 0.00022684217328071383,
926
+ "loss": 1.6624,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.27,
931
+ "learning_rate": 0.00022639640913290027,
932
+ "loss": 1.8384,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.27,
937
+ "learning_rate": 0.00022594684233614908,
938
+ "loss": 1.4881,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.28,
943
+ "learning_rate": 0.00022549348975047252,
944
+ "loss": 1.7802,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.28,
949
+ "learning_rate": 0.00022503636837786052,
950
+ "loss": 1.6981,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.28,
955
+ "learning_rate": 0.00022457549536164306,
956
+ "loss": 1.6845,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.28,
961
+ "learning_rate": 0.00022411088798584728,
962
+ "loss": 1.8524,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.28,
967
+ "learning_rate": 0.00022364256367454923,
968
+ "loss": 1.7893,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.28,
973
+ "learning_rate": 0.00022317053999122038,
974
+ "loss": 1.5371,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.29,
979
+ "learning_rate": 0.00022269483463806917,
980
+ "loss": 1.7511,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.29,
985
+ "learning_rate": 0.00022221546545537674,
986
+ "loss": 1.4536,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.29,
991
+ "learning_rate": 0.00022173245042082822,
992
+ "loss": 1.7809,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.29,
997
+ "learning_rate": 0.0002212458076488384,
998
+ "loss": 1.7447,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.29,
1003
+ "learning_rate": 0.00022075555538987224,
1004
+ "loss": 2.1818,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.3,
1009
+ "learning_rate": 0.0002202617120297607,
1010
+ "loss": 1.8901,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.3,
1015
+ "learning_rate": 0.00021976429608901093,
1016
+ "loss": 1.6585,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.3,
1021
+ "learning_rate": 0.00021926332622211205,
1022
+ "loss": 1.9877,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.3,
1027
+ "learning_rate": 0.0002187588212168351,
1028
+ "loss": 1.4926,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.3,
1033
+ "learning_rate": 0.00021825079999352893,
1034
+ "loss": 1.7696,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.3,
1039
+ "learning_rate": 0.0002177392816044102,
1040
+ "loss": 1.9484,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.31,
1045
+ "learning_rate": 0.00021722428523284927,
1046
+ "loss": 1.6379,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.31,
1051
+ "learning_rate": 0.00021670583019265034,
1052
+ "loss": 1.4783,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.31,
1057
+ "learning_rate": 0.0002161839359273276,
1058
+ "loss": 1.6047,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.31,
1063
+ "learning_rate": 0.00021565862200937565,
1064
+ "loss": 1.6504,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.31,
1069
+ "learning_rate": 0.00021512990813953562,
1070
+ "loss": 1.6248,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.32,
1075
+ "learning_rate": 0.00021459781414605642,
1076
+ "loss": 2.0182,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.32,
1081
+ "learning_rate": 0.000214062359983951,
1082
+ "loss": 1.7979,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.32,
1087
+ "learning_rate": 0.00021352356573424807,
1088
+ "loss": 1.7023,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.32,
1093
+ "learning_rate": 0.00021298145160323896,
1094
+ "loss": 1.6911,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.32,
1099
+ "learning_rate": 0.00021243603792171976,
1100
+ "loss": 1.8985,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.32,
1105
+ "learning_rate": 0.00021188734514422902,
1106
+ "loss": 2.1085,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.33,
1111
+ "learning_rate": 0.00021133539384828054,
1112
+ "loss": 1.8299,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.33,
1117
+ "learning_rate": 0.00021078020473359172,
1118
+ "loss": 1.8975,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.33,
1123
+ "learning_rate": 0.00021022179862130704,
1124
+ "loss": 1.5791,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.33,
1129
+ "learning_rate": 0.00020966019645321765,
1130
+ "loss": 1.7475,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.33,
1135
+ "learning_rate": 0.0002090954192909755,
1136
+ "loss": 1.6978,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.33,
1141
+ "learning_rate": 0.00020852748831530382,
1142
+ "loss": 1.7039,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.34,
1147
+ "learning_rate": 0.00020795642482520266,
1148
+ "loss": 1.5206,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.34,
1153
+ "learning_rate": 0.00020738225023715013,
1154
+ "loss": 1.6684,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.34,
1159
+ "learning_rate": 0.00020680498608429914,
1160
+ "loss": 1.7339,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.34,
1165
+ "learning_rate": 0.00020622465401566999,
1166
+ "loss": 1.6174,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.34,
1171
+ "learning_rate": 0.00020564127579533831,
1172
+ "loss": 1.6451,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.35,
1177
+ "learning_rate": 0.00020505487330161915,
1178
+ "loss": 1.6214,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.35,
1183
+ "learning_rate": 0.00020446546852624604,
1184
+ "loss": 1.7493,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.35,
1189
+ "learning_rate": 0.00020387308357354655,
1190
+ "loss": 1.7067,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.35,
1195
+ "learning_rate": 0.0002032777406596133,
1196
+ "loss": 1.6918,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.35,
1201
+ "learning_rate": 0.00020267946211147058,
1202
+ "loss": 1.9448,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.35,
1207
+ "learning_rate": 0.00020207827036623744,
1208
+ "loss": 1.8517,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.36,
1213
+ "learning_rate": 0.0002014741879702856,
1214
+ "loss": 2.0169,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.36,
1219
+ "learning_rate": 0.0002008672375783946,
1220
+ "loss": 2.1721,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.36,
1225
+ "learning_rate": 0.00020025744195290167,
1226
+ "loss": 1.5175,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.36,
1231
+ "learning_rate": 0.00019964482396284827,
1232
+ "loss": 1.6105,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.36,
1237
+ "learning_rate": 0.0001990294065831225,
1238
+ "loss": 1.9778,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.36,
1243
+ "learning_rate": 0.00019841121289359737,
1244
+ "loss": 1.6379,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.37,
1249
+ "learning_rate": 0.0001977902660782652,
1250
+ "loss": 1.7973,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.37,
1255
+ "learning_rate": 0.00019716658942436834,
1256
+ "loss": 1.6022,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.37,
1261
+ "learning_rate": 0.00019654020632152563,
1262
+ "loss": 1.4371,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.37,
1267
+ "learning_rate": 0.00019591114026085537,
1268
+ "loss": 1.8489,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.37,
1273
+ "learning_rate": 0.0001952794148340943,
1274
+ "loss": 1.6484,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.38,
1279
+ "learning_rate": 0.00019464505373271274,
1280
+ "loss": 1.841,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.38,
1285
+ "learning_rate": 0.00019400808074702624,
1286
+ "loss": 1.4165,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.38,
1291
+ "learning_rate": 0.00019336851976530338,
1292
+ "loss": 1.8259,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.38,
1297
+ "learning_rate": 0.0001927263947728697,
1298
+ "loss": 1.8661,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.38,
1303
+ "learning_rate": 0.00019208172985120837,
1304
+ "loss": 1.4957,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.38,
1309
+ "learning_rate": 0.000191434549177057,
1310
+ "loss": 1.3717,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.39,
1315
+ "learning_rate": 0.00019078487702150102,
1316
+ "loss": 1.5568,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.39,
1321
+ "learning_rate": 0.0001901327377490633,
1322
+ "loss": 1.512,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.39,
1327
+ "learning_rate": 0.00018947815581679052,
1328
+ "loss": 1.7289,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.39,
1333
+ "learning_rate": 0.00018882115577333592,
1334
+ "loss": 1.6628,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.39,
1339
+ "learning_rate": 0.00018816176225803876,
1340
+ "loss": 1.8897,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.39,
1345
+ "learning_rate": 0.0001875,
1346
+ "loss": 1.2269,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.4,
1351
+ "learning_rate": 0.00018683589381715532,
1352
+ "loss": 1.9278,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.4,
1357
+ "learning_rate": 0.00018616946861534396,
1358
+ "loss": 1.5643,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.4,
1363
+ "learning_rate": 0.0001855007493873749,
1364
+ "loss": 1.8058,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.4,
1369
+ "learning_rate": 0.0001848297612120895,
1370
+ "loss": 1.6883,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.4,
1375
+ "learning_rate": 0.00018415652925342105,
1376
+ "loss": 1.4985,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.41,
1381
+ "learning_rate": 0.000183481078759451,
1382
+ "loss": 1.9467,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.41,
1387
+ "learning_rate": 0.00018280343506146197,
1388
+ "loss": 1.6599,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.41,
1393
+ "learning_rate": 0.00018212362357298797,
1394
+ "loss": 1.6791,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.41,
1399
+ "learning_rate": 0.0001814416697888612,
1400
+ "loss": 2.1714,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.41,
1405
+ "learning_rate": 0.00018075759928425582,
1406
+ "loss": 1.6677,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.41,
1411
+ "learning_rate": 0.00018007143771372916,
1412
+ "loss": 1.9834,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.42,
1417
+ "learning_rate": 0.00017938321081025917,
1418
+ "loss": 1.8803,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.42,
1423
+ "learning_rate": 0.00017869294438427964,
1424
+ "loss": 1.8268,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.42,
1429
+ "learning_rate": 0.0001780006643227121,
1430
+ "loss": 1.9126,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.42,
1435
+ "learning_rate": 0.00017730639658799512,
1436
+ "loss": 1.3397,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.42,
1441
+ "learning_rate": 0.00017661016721711063,
1442
+ "loss": 1.5539,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.42,
1447
+ "learning_rate": 0.00017591200232060719,
1448
+ "loss": 1.8692,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.43,
1453
+ "learning_rate": 0.0001752119280816212,
1454
+ "loss": 1.5348,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.43,
1459
+ "learning_rate": 0.00017450997075489462,
1460
+ "loss": 1.9957,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.43,
1465
+ "learning_rate": 0.00017380615666579054,
1466
+ "loss": 1.7454,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.43,
1471
+ "learning_rate": 0.00017310051220930574,
1472
+ "loss": 1.8623,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.43,
1477
+ "learning_rate": 0.00017239306384908096,
1478
+ "loss": 1.9291,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.44,
1483
+ "learning_rate": 0.00017168383811640842,
1484
+ "loss": 1.6059,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.44,
1489
+ "learning_rate": 0.00017097286160923668,
1490
+ "loss": 1.8271,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.44,
1495
+ "learning_rate": 0.0001702601609911733,
1496
+ "loss": 1.8032,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.44,
1501
+ "learning_rate": 0.0001695457629904848,
1502
+ "loss": 1.6174,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.44,
1507
+ "learning_rate": 0.00016882969439909433,
1508
+ "loss": 1.4768,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.44,
1513
+ "learning_rate": 0.0001681119820715768,
1514
+ "loss": 1.9159,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.45,
1519
+ "learning_rate": 0.00016739265292415185,
1520
+ "loss": 1.5289,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.45,
1525
+ "learning_rate": 0.00016667173393367446,
1526
+ "loss": 1.8026,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.45,
1531
+ "learning_rate": 0.00016594925213662303,
1532
+ "loss": 1.6027,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.45,
1537
+ "learning_rate": 0.00016522523462808572,
1538
+ "loss": 1.8634,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.45,
1543
+ "learning_rate": 0.0001644997085607441,
1544
+ "loss": 1.7965,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.45,
1549
+ "learning_rate": 0.00016377270114385485,
1550
+ "loss": 1.8084,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.46,
1555
+ "learning_rate": 0.0001630442396422295,
1556
+ "loss": 1.5158,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.46,
1561
+ "learning_rate": 0.00016231435137521182,
1562
+ "loss": 1.8523,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.46,
1567
+ "learning_rate": 0.00016158306371565322,
1568
+ "loss": 1.2613,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.46,
1573
+ "learning_rate": 0.0001608504040888863,
1574
+ "loss": 1.6135,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.46,
1579
+ "learning_rate": 0.0001601163999716962,
1580
+ "loss": 1.4411,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.47,
1585
+ "learning_rate": 0.00015938107889129023,
1586
+ "loss": 1.7133,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.47,
1591
+ "learning_rate": 0.00015864446842426554,
1592
+ "loss": 1.5927,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.47,
1597
+ "learning_rate": 0.0001579065961955749,
1598
+ "loss": 1.5994,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.47,
1603
+ "learning_rate": 0.00015716748987749065,
1604
+ "loss": 1.6315,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.47,
1609
+ "learning_rate": 0.0001564271771885668,
1610
+ "loss": 2.0437,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.47,
1615
+ "learning_rate": 0.0001556856858925999,
1616
+ "loss": 1.9095,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.48,
1621
+ "learning_rate": 0.00015494304379758735,
1622
+ "loss": 1.5502,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.48,
1627
+ "learning_rate": 0.00015419927875468485,
1628
+ "loss": 1.4151,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.48,
1633
+ "learning_rate": 0.0001534544186571617,
1634
+ "loss": 1.6274,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.48,
1639
+ "learning_rate": 0.00015270849143935483,
1640
+ "loss": 1.6849,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.48,
1645
+ "learning_rate": 0.00015196152507562127,
1646
+ "loss": 1.9244,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.48,
1651
+ "learning_rate": 0.0001512135475792888,
1652
+ "loss": 2.0862,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.49,
1657
+ "learning_rate": 0.00015046458700160553,
1658
+ "loss": 1.7078,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.49,
1663
+ "learning_rate": 0.00014971467143068791,
1664
+ "loss": 1.4565,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.49,
1669
+ "learning_rate": 0.0001489638289904673,
1670
+ "loss": 1.8075,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.49,
1675
+ "learning_rate": 0.00014821208783963522,
1676
+ "loss": 2.2061,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.49,
1681
+ "learning_rate": 0.00014745947617058735,
1682
+ "loss": 1.6676,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.5,
1687
+ "learning_rate": 0.00014670602220836633,
1688
+ "loss": 2.0041,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.5,
1693
+ "learning_rate": 0.00014595175420960293,
1694
+ "loss": 1.5538,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.5,
1699
+ "learning_rate": 0.00014519670046145685,
1700
+ "loss": 1.5781,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.5,
1705
+ "learning_rate": 0.0001444408892805554,
1706
+ "loss": 1.703,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.5,
1711
+ "learning_rate": 0.0001436843490119318,
1712
+ "loss": 1.8105,
1713
+ "step": 284
1714
+ }
1715
+ ],
1716
+ "logging_steps": 1,
1717
+ "max_steps": 565,
1718
+ "num_input_tokens_seen": 0,
1719
+ "num_train_epochs": 1,
1720
+ "save_steps": 142,
1721
+ "total_flos": 2.627459909913936e+18,
1722
+ "train_batch_size": 1,
1723
+ "trial_name": null,
1724
+ "trial_params": null
1725
+ }
checkpoint-284/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88c1454fe3e0c5f38812eb2f4667c494fbefda796a453029074b9ce12e2fe147
3
+ size 6011
checkpoint-284/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)