Update handler.py
Browse files- handler.py +28 -5
handler.py
CHANGED
@@ -3,6 +3,10 @@ import base64
|
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
|
8 |
|
@@ -16,7 +20,7 @@ if device.type != 'cuda':
|
|
16 |
raise ValueError("need to run on GPU")
|
17 |
# set mixed precision dtype
|
18 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
19 |
-
|
20 |
# controlnet mapping for controlnet id and control hinter
|
21 |
CONTROLNET_MAPPING = {
|
22 |
"canny_edge": {
|
@@ -59,16 +63,35 @@ class EndpointHandler():
|
|
59 |
# define default controlnet id and load controlnet
|
60 |
self.control_type = "depth"
|
61 |
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
|
|
|
|
|
|
|
62 |
|
63 |
# Load StableDiffusionControlNetPipeline
|
64 |
#self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
65 |
self.stable_diffusion_id = "Lykon/dreamshaper-8"
|
66 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
controlnet=self.controlnet,
|
68 |
torch_dtype=dtype,
|
69 |
-
safety_checker=
|
70 |
# Define Generator with seed
|
71 |
-
self.generator = torch.Generator(device=
|
72 |
|
73 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
74 |
"""
|
@@ -104,7 +127,7 @@ class EndpointHandler():
|
|
104 |
# process image
|
105 |
image = self.decode_base64_image(image)
|
106 |
#control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
107 |
-
|
108 |
# run inference pipeline
|
109 |
out = self.pipe(
|
110 |
prompt=prompt,
|
|
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
6 |
+
#from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionSafetyChecker
|
7 |
+
# import Safety Checker
|
8 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
9 |
+
|
10 |
import torch
|
11 |
|
12 |
|
|
|
20 |
raise ValueError("need to run on GPU")
|
21 |
# set mixed precision dtype
|
22 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
23 |
+
|
24 |
# controlnet mapping for controlnet id and control hinter
|
25 |
CONTROLNET_MAPPING = {
|
26 |
"canny_edge": {
|
|
|
63 |
# define default controlnet id and load controlnet
|
64 |
self.control_type = "depth"
|
65 |
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
|
66 |
+
|
67 |
+
#processor = AutoProcessor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
68 |
+
|
69 |
|
70 |
# Load StableDiffusionControlNetPipeline
|
71 |
#self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
72 |
self.stable_diffusion_id = "Lykon/dreamshaper-8"
|
73 |
+
# self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
74 |
+
# controlnet=self.controlnet,
|
75 |
+
# torch_dtype=dtype,
|
76 |
+
# #safety_checker=None).to(device)
|
77 |
+
# #processor = AutoProcessor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
78 |
+
# #safety_checker = SafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
79 |
+
# safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
80 |
+
|
81 |
+
# self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
82 |
+
# self.stable_diffusion_id,
|
83 |
+
# controlnet=self.controlnet,
|
84 |
+
# torch_dtype=dtype,
|
85 |
+
# safety_checker = SafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
86 |
+
# ).to(device)
|
87 |
+
|
88 |
+
|
89 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
90 |
controlnet=self.controlnet,
|
91 |
torch_dtype=dtype,
|
92 |
+
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16)).to("cuda")
|
93 |
# Define Generator with seed
|
94 |
+
self.generator = torch.Generator(device=device.type).manual_seed(3)
|
95 |
|
96 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
97 |
"""
|
|
|
127 |
# process image
|
128 |
image = self.decode_base64_image(image)
|
129 |
#control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
130 |
+
|
131 |
# run inference pipeline
|
132 |
out = self.pipe(
|
133 |
prompt=prompt,
|