Commit
·
847ce27
1
Parent(s):
9b12fa2
test 2
Browse files- handler.py +13 -11
handler.py
CHANGED
@@ -6,6 +6,7 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
|
6 |
#from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionSafetyChecker
|
7 |
# import Safety Checker
|
8 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
|
9 |
|
10 |
import torch
|
11 |
|
@@ -75,15 +76,11 @@ class EndpointHandler():
|
|
75 |
controlnet=self.controlnet,
|
76 |
torch_dtype=dtype,
|
77 |
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
|
|
|
|
|
|
|
78 |
# Define Generator with seed
|
79 |
self.generator = torch.Generator(device=device.type).manual_seed(3)
|
80 |
-
|
81 |
-
targets = [self.pipe.vae, self.pipe.unet]
|
82 |
-
for target in targets:
|
83 |
-
for module in target.modules():
|
84 |
-
if isinstance(module, torch.nn.Conv2d):
|
85 |
-
module.padding_mode = "circular"
|
86 |
-
|
87 |
|
88 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
89 |
"""
|
@@ -107,7 +104,12 @@ class EndpointHandler():
|
|
107 |
self.pipe.controlnet = self.controlnet
|
108 |
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
# hyperparamters
|
112 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
113 |
guidance_scale = data.pop("guidance_scale", 7.4)
|
@@ -127,17 +129,17 @@ class EndpointHandler():
|
|
127 |
#control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
128 |
|
129 |
# run inference pipeline
|
130 |
-
out = self.
|
131 |
prompt=prompt,
|
132 |
negative_prompt=negative_prompt,
|
133 |
#image=control_image,
|
134 |
-
image=image,
|
135 |
num_inference_steps=num_inference_steps,
|
136 |
guidance_scale=guidance_scale,
|
137 |
num_images_per_prompt=1,
|
138 |
height=height,
|
139 |
width=width,
|
140 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
141 |
generator=self.generator
|
142 |
)
|
143 |
|
|
|
6 |
#from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionSafetyChecker
|
7 |
# import Safety Checker
|
8 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
9 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
|
10 |
|
11 |
import torch
|
12 |
|
|
|
76 |
controlnet=self.controlnet,
|
77 |
torch_dtype=dtype,
|
78 |
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
|
79 |
+
|
80 |
+
self.pipe_without_controlnet = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=dtype).to(device.type)
|
81 |
+
|
82 |
# Define Generator with seed
|
83 |
self.generator = torch.Generator(device=device.type).manual_seed(3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
86 |
"""
|
|
|
104 |
self.pipe.controlnet = self.controlnet
|
105 |
|
106 |
|
107 |
+
targets = [self.pipe_without_controlnet.vae, self.pipe_without_controlnet.unet]
|
108 |
+
for target in targets:
|
109 |
+
for module in target.modules():
|
110 |
+
if isinstance(module, torch.nn.Conv2d):
|
111 |
+
module.padding_mode = "circular"
|
112 |
+
|
113 |
# hyperparamters
|
114 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
115 |
guidance_scale = data.pop("guidance_scale", 7.4)
|
|
|
129 |
#control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
130 |
|
131 |
# run inference pipeline
|
132 |
+
out = self.pipe_without_controlnet(
|
133 |
prompt=prompt,
|
134 |
negative_prompt=negative_prompt,
|
135 |
#image=control_image,
|
136 |
+
#image=image,
|
137 |
num_inference_steps=num_inference_steps,
|
138 |
guidance_scale=guidance_scale,
|
139 |
num_images_per_prompt=1,
|
140 |
height=height,
|
141 |
width=width,
|
142 |
+
#controlnet_conditioning_scale=controlnet_conditioning_scale,
|
143 |
generator=self.generator
|
144 |
)
|
145 |
|