|
from typing import Dict, List, Any |
|
import base64 |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline |
|
|
|
import torch |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.stable_diffusion_id = "Lykon/dreamshaper-8" |
|
|
|
self.prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype) |
|
self.decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype) |
|
|
|
|
|
self.generator = torch.Generator(device=device.type).manual_seed(3) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
|
|
|
|
|
|
|
|
prompt = data.pop("inputs", None) |
|
num_inference_steps = data.pop("num_inference_steps", 30) |
|
guidance_scale = data.pop("guidance_scale", 7.4) |
|
negative_prompt = data.pop("negative_prompt", None) |
|
height = data.pop("height", None) |
|
width = data.pop("width", None) |
|
|
|
self.prior_pipeline.to(device) |
|
self.decoder_pipeline.to(device) |
|
|
|
prior_output = self.prior_pipeline( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
|
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=self.generator, |
|
|
|
|
|
) |
|
|
|
|
|
decoder_output = self.decoder_pipeline( |
|
image_embeddings=prior_output.image_embeddings, |
|
prompt=prompt, |
|
num_inference_steps=num_inference_steps, |
|
|
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
generator=self.generator, |
|
output_type="pil", |
|
).images |
|
|
|
return decoder_output[0] |
|
|
|
|
|
|