yamildiego's picture
s
471adc0
raw
history blame
3.26 kB
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers import StableDiffusionPipeline
import torch
# import numpy as np
# import cv2
# # set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler():
def __init__(self, path=""):
self.stable_diffusion_id = "Lykon/dreamshaper-8"
self.pipe = StableDiffusionPipeline.from_pretrained(self.stable_diffusion_id,torch_dtype=dtype,safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to(device.type)
#self.pipe.enable_xformers_memory_efficient_attention()
#self.pipe.enable_vae_tiling()
self.generator = torch.Generator(device=device.type).manual_seed(3)
from typing import Optional
from torch import Tensor
from torch.nn import functional as F
from torch.nn import Conv2d
from torch.nn.modules.utils import _pair
def asymmetricConv2DConvForward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = F.pad(input, self.paddingX, mode='circular')
working = F.pad(working, self.paddingY, mode='constant')
return F.conv2d(working, weight, bias, self.stride, _pair(0), self.dilation, self.groups)
targets = [pipe.vae, pipe.text_encoder, pipe.unet,]
conv_layers = []
for target in targets:
for module in target.modules():
if isinstance(module, torch.nn.Conv2d):
conv_layers.append(module)
for cl in conv_layers:
cl._conv_forward = asymmetricConv2DConvForward.__get__(cl, Conv2d)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
# """
# :param data: A dictionary contains `inputs` and optional `image` field.
# :return: A dictionary with `image` field contains image in base64.
# """
prompt = data.pop("inputs", None)
num_inference_steps = data.pop("num_inference_steps", 30)
guidance_scale = data.pop("guidance_scale", 7.4)
negative_prompt = data.pop("negative_prompt", None)
height = data.pop("height", None)
width = data.pop("width", None)
# run inference pipeline
out = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
height=height,
width=width,
generator=self.generator
)
# return first generate PIL image
return out.images[0]