|
from typing import Dict, List, Any |
|
import base64 |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker |
|
from diffusers import StableDiffusionPipeline |
|
|
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.stable_diffusion_id = "Lykon/dreamshaper-8" |
|
|
|
|
|
|
|
|
|
|
|
self.pipe = StableDiffusionPipeline.from_pretrained(self.stable_diffusion_id,torch_dtype=dtype,safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to(device.type) |
|
|
|
|
|
self.generator = torch.Generator(device=device.type).manual_seed(3) |
|
|
|
|
|
from typing import Optional |
|
from torch import Tensor |
|
from torch.nn import functional as F |
|
from torch.nn import Conv2d |
|
from torch.nn.modules.utils import _pair |
|
|
|
def asymmetricConv2DConvForward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): |
|
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0) |
|
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3]) |
|
working = F.pad(input, self.paddingX, mode='circular') |
|
working = F.pad(working, self.paddingY, mode='constant') |
|
return F.conv2d(working, weight, bias, self.stride, _pair(0), self.dilation, self.groups) |
|
|
|
targets = [pipe.vae, pipe.text_encoder, pipe.unet,] |
|
conv_layers = [] |
|
for target in targets: |
|
for module in target.modules(): |
|
if isinstance(module, torch.nn.Conv2d): |
|
conv_layers.append(module) |
|
|
|
for cl in conv_layers: |
|
cl._conv_forward = asymmetricConv2DConvForward.__get__(cl, Conv2d) |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
|
|
|
|
|
|
|
|
prompt = data.pop("inputs", None) |
|
num_inference_steps = data.pop("num_inference_steps", 30) |
|
guidance_scale = data.pop("guidance_scale", 7.4) |
|
negative_prompt = data.pop("negative_prompt", None) |
|
height = data.pop("height", None) |
|
width = data.pop("width", None) |
|
|
|
|
|
out = self.pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
height=height, |
|
width=width, |
|
generator=self.generator |
|
) |
|
|
|
|
|
|
|
return out.images[0] |
|
|
|
|