File size: 6,024 Bytes
1f7551f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e49f5
 
 
 
 
 
1f7551f
 
 
 
 
 
 
 
 
a831ddd
1491344
a831ddd
 
 
 
1f7551f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e49f5
1f7551f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from typing import  Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
#from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionSafetyChecker
# import Safety Checker
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker

import torch


import numpy as np
import cv2
import controlnet_hinter

# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
    raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
    
# controlnet mapping for controlnet id and control hinter
CONTROLNET_MAPPING = {
    "canny_edge": {
        "model_id": "lllyasviel/sd-controlnet-canny",
        "hinter": controlnet_hinter.hint_canny
    },
    "pose": {
        "model_id": "lllyasviel/sd-controlnet-openpose",
        "hinter": controlnet_hinter.hint_openpose
    },
    "depth": {
        "model_id": "lllyasviel/sd-controlnet-depth",
        "hinter": controlnet_hinter.hint_depth
    },
    "scribble": {
        "model_id": "lllyasviel/sd-controlnet-scribble",
        "hinter": controlnet_hinter.hint_scribble,
    },
    "segmentation": {
        "model_id": "lllyasviel/sd-controlnet-seg",
        "hinter": controlnet_hinter.hint_segmentation,
    },
    "normal": {
        "model_id": "lllyasviel/sd-controlnet-normal",
        "hinter": controlnet_hinter.hint_normal,
    },
    "hed": {
        "model_id": "lllyasviel/sd-controlnet-hed",
        "hinter": controlnet_hinter.hint_hed,
    },
    "hough": {
        "model_id": "lllyasviel/sd-controlnet-mlsd",
        "hinter": controlnet_hinter.hint_hough,
    }
}


class EndpointHandler():
    def __init__(self, path=""):
        # define default controlnet id and load controlnet
        self.control_type = "depth"
        self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)

        #processor = AutoProcessor.from_pretrained("CompVis/stable-diffusion-safety-checker")

        
        # Load StableDiffusionControlNetPipeline 
        #self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
        self.stable_diffusion_id = "Lykon/dreamshaper-8"

        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
                                                                      controlnet=self.controlnet, 
                                                                      torch_dtype=dtype,
                                                                      safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
        # Define Generator with seed
        self.generator = torch.Generator(device=device.type).manual_seed(3)

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        """
        :param data: A dictionary contains `inputs` and optional `image` field.
        :return: A dictionary with `image` field contains image in base64.
        """
        prompt = data.pop("inputs", None)
        image = data.pop("image", None)
        controlnet_type = data.pop("controlnet_type", None)
        
        # Check if neither prompt nor image is provided
        if prompt is None and image is None:
            return {"error": "Please provide a prompt and base64 encoded image."}
        
        # Check if a new controlnet is provided
        if controlnet_type is not None and controlnet_type != self.control_type:
            print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
            self.control_type = controlnet_type
            self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
                                                              torch_dtype=dtype).to(device)
            self.pipe.controlnet = self.controlnet
        
        
        targets = [self.pipe.vae, self.pipe.unet]
        for target in targets:
            for module in target.modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = "circular"
        
        # hyperparamters
        negatice_prompt = data.pop("negative_prompt", None)
        num_inference_steps = data.pop("num_inference_steps", 30)
        guidance_scale = data.pop("guidance_scale", 7.4)
        negative_prompt = data.pop("negative_prompt", None)
        height = data.pop("height", None)
        width = data.pop("width", None)
        controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
        
        test_var = data.pop("test_var", "DEFAULT")
        tiling = data.pop("tiling", True)
        
        print(f"prompt: {prompt}")
        print(f"prompt: {test_var}")
        
        # process image
        image = self.decode_base64_image(image)
        #control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)

        # run inference pipeline
        out = self.pipe(
            prompt=prompt, 
            negative_prompt=negative_prompt,
            #image=control_image,
            image=image,
            num_inference_steps=num_inference_steps, 
            guidance_scale=guidance_scale,
            num_images_per_prompt=1,
            height=height,
            width=width,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            generator=self.generator
        )

        
        # return first generate PIL image
        return out.images[0]
    
    # helper to decode input image
    def decode_base64_image(self, image_string):
        base64_image = base64.b64decode(image_string)
        buffer = BytesIO(base64_image)
        image = Image.open(buffer)
        return image