File size: 3,967 Bytes
1f7551f 061d7a5 1f7551f 061d7a5 1f7551f 061d7a5 1f7551f 061d7a5 a9ef0f5 061d7a5 a9ef0f5 061d7a5 471adc0 061d7a5 471adc0 061d7a5 a9ef0f5 061d7a5 1f7551f 061d7a5 1f7551f 061d7a5 1f7551f 061d7a5 06e49f5 1f7551f 061d7a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import torch
import numpy as np
import cv2
import controlnet_hinter
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
CONTROLNET_MAPPING = {
"depth": {
"model_id": "lllyasviel/sd-controlnet-depth",
"hinter": controlnet_hinter.hint_depth
},
}
SD_ID_MAPPING = {
"dreamshaper": "stablediffusionapi/dreamshaper-xl",
"juggernaut": "stablediffusionapi/juggernaut-xl-v8",
"realistic-vision":"SG161222/Realistic_Vision_V1.4",
"rev-animated":"s6yx/ReV_Animated"
}
class EndpointHandler():
def __init__(self, path=""):
self.control_type = "depth"
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
# Define Generator with seed
self.generator = torch.Generator(device=device.type).manual_seed(3)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
:param data: A dictionary contains `inputs` and optional `image` field.
:return: A dictionary with `image` field contains image in base64.
"""
# hyperparamters
sd_model = data.pop("sd_model", None)
prompt = data.pop("inputs", None)
negative_prompt = data.pop("negative_prompt", None)
image_depth_map = data.pop("image_depth_map", None)
num_inference_steps = data.pop("num_inference_steps", 25)
guidance_scale = data.pop("guidance_scale", 7)
height = data.pop("height", None)
width = data.pop("width", None)
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
self.stable_diffusion_id = SD_ID_MAPPING.get(sd_model, "Lykon/dreamshaper-8")
print(f"Using stable diffusion model: {self.stable_diffusion_id}")
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
controlnet=self.controlnet,
torch_dtype=dtype,
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
# Check if neither prompt nor image is provided
if prompt is None:
return {"error": "Please provide a prompt"}
if(image_depth_map is None):
with open("./default.jpg", "rb") as image_file:
image = base64.b64encode(image_file.read()).decode('utf-8')
# process image
image = self.decode_base64_image(image)
# run inference pipeline
out = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
height=height,
width=width,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=self.generator
)
# return first generate PIL image
return out.images[0]
# helper to decode input image
def decode_base64_image(self, image_string):
base64_image = base64.b64decode(image_string)
buffer = BytesIO(base64_image)
image = Image.open(buffer)
return image |