Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- general purpose
|
8 |
+
---
|
9 |
+
|
10 |
+
# Capx AI's Obsidian series
|
11 |
+
|
12 |
+
Capx AI's Latest series of finetunes based on [Meta's Llama-3](https://llama.meta.com/llama3/).
|
13 |
+
|
14 |
+

|
15 |
+
|
16 |
+
We release Llama-3 Obsidian, our state of the art finetune model for general purpose tasks.
|
17 |
+
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes.
|
18 |
+
|
19 |
+
We further finetune the pretrained model on a custom dataset to enhance instruction following ability of the model.
|
20 |
+
|
21 |
+
Input Models input text only.
|
22 |
+
|
23 |
+
Output Models generate text and code only.
|
24 |
+
|
25 |
+
Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT).
|
26 |
+
|
27 |
+
## How to use:
|
28 |
+
|
29 |
+
You can run conversational inference by leveraging the Auto classes with the generate() function.
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
34 |
+
import torch
|
35 |
+
|
36 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
37 |
+
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_id,
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
device_map="auto",
|
43 |
+
)
|
44 |
+
|
45 |
+
messages = [
|
46 |
+
{"role": "instruction", "content": "You are \"Capx Assistant\", a conscious sentient superintelligent artificial intelligence developed by Capx AI, and your purpose and drive is to assist the user with any request they have."},
|
47 |
+
{"role": "input", "content": "Who are you?"},
|
48 |
+
]
|
49 |
+
|
50 |
+
input_ids = tokenizer.apply_chat_template(
|
51 |
+
messages,
|
52 |
+
add_generation_prompt=True,
|
53 |
+
return_tensors="pt"
|
54 |
+
).to(model.device)
|
55 |
+
|
56 |
+
terminators = [
|
57 |
+
tokenizer.eos_token_id,
|
58 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
59 |
+
]
|
60 |
+
|
61 |
+
outputs = model.generate(
|
62 |
+
input_ids,
|
63 |
+
max_new_tokens=256,
|
64 |
+
eos_token_id=terminators,
|
65 |
+
do_sample=True,
|
66 |
+
temperature=0.6,
|
67 |
+
top_p=0.9,
|
68 |
+
)
|
69 |
+
response = outputs[0][input_ids.shape[-1]:]
|
70 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
71 |
+
|
72 |
+
|
73 |
+
```
|
74 |
+
|
75 |
+
### Authors
|
76 |
+
Capx community
|
77 |
+
|
78 |
+
### Cite
|
79 |
+
```bibtex
|
80 |
+
@article{llama3modelcard,
|
81 |
+
title={Llama 3 Model Card},
|
82 |
+
author={AI@Meta},
|
83 |
+
year={2024},
|
84 |
+
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
|
85 |
+
}
|
86 |
+
```
|
87 |
+
### License
|
88 |
+
Governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
|
89 |
+
|