# SwinGPSModel ## Model Class ```python class SwinGPSModel(nn.Module): def __init__(self, pretrained=True): super(SwinGPSModel, self).__init__() # Load the pretrained Swin Transformer self.backbone = create_model('swin_base_patch4_window7_224', pretrained=pretrained) # Get the number of features from the backbone num_features = self.backbone.num_features self.backbone.head = nn.Identity() # Define the regression head self.regression_head = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(num_features, 256), nn.ReLU(), nn.Linear(256, 2) ) def forward(self, x): # Forward pass through the backbone features = self.backbone(x) features = features.permute(0, 3, 1, 2) return self.regression_head(features) ``` ## How to Run In the notebook Run_swin_base.ipynb, replace the line: ```python dataset_test = load_dataset("gydou/released_img") ``` with the proper location of the testing dataset. ## Training Dataset Statistics ```python lat_std = 0.0006914493505038013 lon_std = 0.0006539239061573955 lat_mean = 39.9517411499467 lon_mean = -75.19143213125122 ```