# Google ViT Model ## Model Class ```python base_model = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k") class ViTForRegression(nn.Module): def __init__(self, base_model, num_outputs=2): super(ViTForRegression, self).__init__() self.base_model = base_model hidden_size = base_model.config.hidden_size self.regression_head = nn.Linear(hidden_size, num_outputs) def forward(self, pixel_values): outputs = self.base_model(pixel_values=pixel_values) pooler_output = outputs.pooler_output predictions = self.regression_head(pooler_output) return predictions model = ViTForRegression(base_model).to(device) ``` ## How to Run In the notebook ViT.ipynb, replace the line: ```python dataset_test = load_dataset("gydou/released_img") ``` with the proper location of the testing dataset. NOTE: No .pth file, this model did not perform well enough on sample test dataset. ## Training Dataset Statistics ```python lat_std = 0.0006914493505038013 lon_std = 0.0006539239061573955 lat_mean = 39.9517411499467 lon_mean = -75.19143213125122 ```