--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: vulnerability-severity-classification-roberta-base results: [] --- # vulnerability-severity-classification-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5091 - Accuracy: 0.8220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.6771 | 1.0 | 26510 | 0.6352 | 0.7360 | | 0.6633 | 2.0 | 53020 | 0.5819 | 0.7646 | | 0.5362 | 3.0 | 79530 | 0.5248 | 0.7932 | | 0.4466 | 4.0 | 106040 | 0.5198 | 0.8121 | | 0.3886 | 5.0 | 132550 | 0.5091 | 0.8220 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1