--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: vulnerability-severity-classification-roberta-base results: [] datasets: - CIRCL/vulnerability-scores --- # vulnerability-severity-classification-roberta-base This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores). ## Model description It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions. ## How to get started with the model ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch labels = ["low", "medium", "high", "critical"] model_name = "cedricbonhomme/tinyTinyModel" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method." inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True) # Run inference with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) # Print results print("Predictions:", predictions) predicted_class = torch.argmax(predictions, dim=-1).item() print("Predicted severity:", labels[predicted_class]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5348 | 1.0 | 25731 | 0.6370 | 0.7410 | | 0.4628 | 2.0 | 51462 | 0.5785 | 0.7692 | | 0.5154 | 3.0 | 77193 | 0.5256 | 0.7953 | | 0.4049 | 4.0 | 102924 | 0.5046 | 0.8145 | | 0.2862 | 5.0 | 128655 | 0.5110 | 0.8265 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0