cedricbonhomme commited on
Commit
eabe176
·
verified ·
1 Parent(s): ef86dbb

End of training

Browse files
Files changed (2) hide show
  1. README.md +18 -45
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,47 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.5087
25
- - Accuracy: 0.8286
26
 
27
  ## Model description
28
 
29
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
30
-
31
-
32
- ## How to get started with the model
33
-
34
- ```python
35
- >>> from transformers import AutoModelForSequenceClassification, AutoTokenizer
36
- ... import torch
37
- ...
38
- ... labels = ["low", "medium", "high", "critical"]
39
- ...
40
- ... model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
41
- ... tokenizer = AutoTokenizer.from_pretrained(model_name)
42
- ... model = AutoModelForSequenceClassification.from_pretrained(model_name)
43
- ... model.eval()
44
- ...
45
- ... test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
46
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
47
- ... inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
48
- ...
49
- ... # Run inference
50
- ... with torch.no_grad():
51
- ... outputs = model(**inputs)
52
- ... predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
53
- ...
54
- ... # Print results
55
- ... print("Predictions:", predictions)
56
- ... predicted_class = torch.argmax(predictions, dim=-1).item()
57
- ... print("Predicted severity:", labels[predicted_class])
58
- ...
59
- Predictions: tensor([[4.9335e-04, 3.4782e-02, 2.6257e-01, 7.0215e-01]])
60
- Predicted severity: critical
61
- ```
62
 
63
  ## Training procedure
64
 
@@ -77,11 +50,11 @@ The following hyperparameters were used during training:
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
79
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
80
- | 0.6379 | 1.0 | 26871 | 0.6473 | 0.7292 |
81
- | 0.4942 | 2.0 | 53742 | 0.5829 | 0.7669 |
82
- | 0.4624 | 3.0 | 80613 | 0.5428 | 0.7982 |
83
- | 0.3467 | 4.0 | 107484 | 0.5104 | 0.8187 |
84
- | 0.4102 | 5.0 | 134355 | 0.5087 | 0.8286 |
85
 
86
 
87
  ### Framework versions
@@ -89,4 +62,4 @@ The following hyperparameters were used during training:
89
  - Transformers 4.51.3
90
  - Pytorch 2.7.0+cu126
91
  - Datasets 3.5.0
92
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.4956
22
+ - Accuracy: 0.8294
23
 
24
  ## Model description
25
 
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.6174 | 1.0 | 26913 | 0.6369 | 0.7439 |
54
+ | 0.5776 | 2.0 | 53826 | 0.5643 | 0.7777 |
55
+ | 0.5285 | 3.0 | 80739 | 0.5198 | 0.8026 |
56
+ | 0.4074 | 4.0 | 107652 | 0.4993 | 0.8198 |
57
+ | 0.2624 | 5.0 | 134565 | 0.4956 | 0.8294 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.0+cu126
64
  - Datasets 3.5.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-04-30T12:03:15,codecarbon,d4239479-931a-44ec-b579-857001bd3485,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22291.09947314672,0.3980622433512762,1.785745220108175e-05,42.5,350.6976920332212,94.34470081329346,0.26297261152170354,2.9348807245693536,0.5837436481415417,3.7815969842326003,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-05-05T13:04:52,codecarbon,4e93da60-c02f-48cb-81ee-52aeae364584,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22289.27175961435,0.39885643060794007,1.7894547426651375e-05,42.5,330.69648896037273,94.34470081329346,0.2629468895621533,2.942507891504448,0.5836869934214994,3.789141774488092,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0