End of training
Browse files- README.md +18 -45
- emissions.csv +1 -1
README.md
CHANGED
@@ -9,8 +9,6 @@ metrics:
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
12 |
-
datasets:
|
13 |
-
- CIRCL/vulnerability-scores
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,47 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# vulnerability-severity-classification-roberta-base
|
20 |
|
21 |
-
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on
|
22 |
-
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
... labels = ["low", "medium", "high", "critical"]
|
39 |
-
...
|
40 |
-
... model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
|
41 |
-
... tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
-
... model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
43 |
-
... model.eval()
|
44 |
-
...
|
45 |
-
... test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
|
46 |
-
that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
|
47 |
-
... inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
|
48 |
-
...
|
49 |
-
... # Run inference
|
50 |
-
... with torch.no_grad():
|
51 |
-
... outputs = model(**inputs)
|
52 |
-
... predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
53 |
-
...
|
54 |
-
... # Print results
|
55 |
-
... print("Predictions:", predictions)
|
56 |
-
... predicted_class = torch.argmax(predictions, dim=-1).item()
|
57 |
-
... print("Predicted severity:", labels[predicted_class])
|
58 |
-
...
|
59 |
-
Predictions: tensor([[4.9335e-04, 3.4782e-02, 2.6257e-01, 7.0215e-01]])
|
60 |
-
Predicted severity: critical
|
61 |
-
```
|
62 |
|
63 |
## Training procedure
|
64 |
|
@@ -77,11 +50,11 @@ The following hyperparameters were used during training:
|
|
77 |
|
78 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
79 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
@@ -89,4 +62,4 @@ The following hyperparameters were used during training:
|
|
89 |
- Transformers 4.51.3
|
90 |
- Pytorch 2.7.0+cu126
|
91 |
- Datasets 3.5.0
|
92 |
-
- Tokenizers 0.21.1
|
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
16 |
|
17 |
# vulnerability-severity-classification-roberta-base
|
18 |
|
19 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
|
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4956
|
22 |
+
- Accuracy: 0.8294
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Training procedure
|
37 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
53 |
+
| 0.6174 | 1.0 | 26913 | 0.6369 | 0.7439 |
|
54 |
+
| 0.5776 | 2.0 | 53826 | 0.5643 | 0.7777 |
|
55 |
+
| 0.5285 | 3.0 | 80739 | 0.5198 | 0.8026 |
|
56 |
+
| 0.4074 | 4.0 | 107652 | 0.4993 | 0.8198 |
|
57 |
+
| 0.2624 | 5.0 | 134565 | 0.4956 | 0.8294 |
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
62 |
- Transformers 4.51.3
|
63 |
- Pytorch 2.7.0+cu126
|
64 |
- Datasets 3.5.0
|
65 |
+
- Tokenizers 0.21.1
|
emissions.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
-
2025-
|
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2025-05-05T13:04:52,codecarbon,4e93da60-c02f-48cb-81ee-52aeae364584,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22289.27175961435,0.39885643060794007,1.7894547426651375e-05,42.5,330.69648896037273,94.34470081329346,0.2629468895621533,2.942507891504448,0.5836869934214994,3.789141774488092,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
|