cedricbonhomme commited on
Commit
e973162
·
verified ·
1 Parent(s): 16f731a

End of training

Browse files
Files changed (2) hide show
  1. README.md +14 -41
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,47 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
24
-
25
  It achieves the following results on the evaluation set:
26
- - Loss: 0.5141
27
- - Accuracy: 0.8267
28
 
29
  ## Model description
30
 
31
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
32
-
33
-
34
- ## How to get started with the model
35
-
36
- ```python
37
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
38
- import torch
39
-
40
- labels = ["low", "medium", "high", "critical"]
41
-
42
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
43
- tokenizer = AutoTokenizer.from_pretrained(model_name)
44
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
45
- model.eval()
46
 
47
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
48
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
49
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
50
 
51
- # Run inference
52
- with torch.no_grad():
53
- outputs = model(**inputs)
54
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
55
 
56
- # Print results
57
- print("Predictions:", predictions)
58
- predicted_class = torch.argmax(predictions, dim=-1).item()
59
- print("Predicted severity:", labels[predicted_class])
60
- ```
61
 
 
62
 
63
  ## Training procedure
64
 
@@ -77,11 +50,11 @@ The following hyperparameters were used during training:
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
79
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
80
- | 0.688 | 1.0 | 27243 | 0.6592 | 0.7350 |
81
- | 0.5601 | 2.0 | 54486 | 0.5602 | 0.7764 |
82
- | 0.4741 | 3.0 | 81729 | 0.5347 | 0.8005 |
83
- | 0.3537 | 4.0 | 108972 | 0.5066 | 0.8164 |
84
- | 0.4263 | 5.0 | 136215 | 0.5141 | 0.8267 |
85
 
86
 
87
  ### Framework versions
@@ -89,4 +62,4 @@ The following hyperparameters were used during training:
89
  - Transformers 4.51.3
90
  - Pytorch 2.7.0+cu126
91
  - Datasets 3.6.0
92
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.4977
22
+ - Accuracy: 0.8282
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
 
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.6104 | 1.0 | 27258 | 0.6445 | 0.7436 |
54
+ | 0.5623 | 2.0 | 54516 | 0.5718 | 0.7731 |
55
+ | 0.4926 | 3.0 | 81774 | 0.5292 | 0.7999 |
56
+ | 0.4963 | 4.0 | 109032 | 0.5039 | 0.8192 |
57
+ | 0.4027 | 5.0 | 136290 | 0.4977 | 0.8282 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.0+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-05-23T14:06:40,codecarbon,502c031d-5242-4691-b790-8ba670fb6f5f,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22568.717941163108,0.4037375703996053,1.788925589181244e-05,42.5,226.35816568313916,94.34468364715576,0.2662543288831904,2.9782288748034134,0.5910294683786624,3.8355126720652577,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-05-26T19:05:42,codecarbon,e7543fb4-360a-4000-962e-4799d2abaf96,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,23156.837513568928,0.4180810014444384,1.8054322020416673e-05,42.5,297.7508283866558,94.34468364715576,0.2732017867674655,3.092122704807295,0.6064509798106038,3.9717754713853712,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0