cedricbonhomme commited on
Commit
e840157
·
verified ·
1 Parent(s): e244c56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -12
README.md CHANGED
@@ -16,24 +16,48 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
20
  It achieves the following results on the evaluation set:
21
  - Loss: 0.5058
22
  - Accuracy: 0.8269
23
 
24
  ## Model description
25
 
26
- More information needed
27
-
28
- ## Intended uses & limitations
29
-
30
- More information needed
31
-
32
- ## Training and evaluation data
33
-
34
- More information needed
35
-
36
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  ### Training hyperparameters
39
 
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
20
+
21
+
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.5058
24
  - Accuracy: 0.8269
25
 
26
  ## Model description
27
 
28
+ It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
29
+
30
+
31
+ ## How to get started with the model
32
+
33
+ ```python
34
+ >>> from transformers import AutoModelForSequenceClassification, AutoTokenizer
35
+ ... import torch
36
+ ...
37
+ ... labels = ["low", "medium", "high", "critical"]
38
+ ...
39
+ ... model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
40
+ ... tokenizer = AutoTokenizer.from_pretrained(model_name)
41
+ ... model = AutoModelForSequenceClassification.from_pretrained(model_name)
42
+ ... model.eval()
43
+ ...
44
+ ... test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
45
+ that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
46
+ ... inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
47
+ ...
48
+ ... # Run inference
49
+ ... with torch.no_grad():
50
+ ... outputs = model(**inputs)
51
+ ... predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
52
+ ...
53
+ ... # Print results
54
+ ... print("Predictions:", predictions)
55
+ ... predicted_class = torch.argmax(predictions, dim=-1).item()
56
+ ... print("Predicted severity:", labels[predicted_class])
57
+ ...
58
+ Predictions: tensor([[4.9335e-04, 3.4782e-02, 2.6257e-01, 7.0215e-01]])
59
+ Predicted severity: critical
60
+ ```
61
 
62
  ### Training hyperparameters
63