cedricbonhomme commited on
Commit
aeaab11
·
verified ·
1 Parent(s): 73c6ba9

End of training

Browse files
Files changed (2) hide show
  1. README.md +14 -41
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,47 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
24
-
25
-
26
  It achieves the following results on the evaluation set:
27
- - Loss: 0.4977
28
- - Accuracy: 0.8282
29
 
30
  ## Model description
31
 
32
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
33
-
34
-
35
- ## How to get started with the model
36
-
37
- ```python
38
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
39
- import torch
40
-
41
- labels = ["low", "medium", "high", "critical"]
42
 
43
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
44
- tokenizer = AutoTokenizer.from_pretrained(model_name)
45
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
46
- model.eval()
47
 
48
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
49
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
50
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
51
 
52
- # Run inference
53
- with torch.no_grad():
54
- outputs = model(**inputs)
55
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
56
 
57
- # Print results
58
- print("Predictions:", predictions)
59
- predicted_class = torch.argmax(predictions, dim=-1).item()
60
- print("Predicted severity:", labels[predicted_class])
61
- ```
62
 
63
  ## Training procedure
64
 
@@ -77,11 +50,11 @@ The following hyperparameters were used during training:
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
79
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
80
- | 0.6104 | 1.0 | 27258 | 0.6445 | 0.7436 |
81
- | 0.5623 | 2.0 | 54516 | 0.5718 | 0.7731 |
82
- | 0.4926 | 3.0 | 81774 | 0.5292 | 0.7999 |
83
- | 0.4963 | 4.0 | 109032 | 0.5039 | 0.8192 |
84
- | 0.4027 | 5.0 | 136290 | 0.4977 | 0.8282 |
85
 
86
 
87
  ### Framework versions
@@ -89,4 +62,4 @@ The following hyperparameters were used during training:
89
  - Transformers 4.51.3
90
  - Pytorch 2.7.0+cu126
91
  - Datasets 3.6.0
92
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
 
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5004
22
+ - Accuracy: 0.8293
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
33
 
34
+ More information needed
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.6697 | 1.0 | 27326 | 0.6337 | 0.7444 |
54
+ | 0.4882 | 2.0 | 54652 | 0.5695 | 0.7761 |
55
+ | 0.4137 | 3.0 | 81978 | 0.5285 | 0.7983 |
56
+ | 0.3413 | 4.0 | 109304 | 0.5046 | 0.8197 |
57
+ | 0.2704 | 5.0 | 136630 | 0.5004 | 0.8293 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.0+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-05-26T19:05:42,codecarbon,e7543fb4-360a-4000-962e-4799d2abaf96,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,23156.837513568928,0.4180810014444384,1.8054322020416673e-05,42.5,297.7508283866558,94.34468364715576,0.2732017867674655,3.092122704807295,0.6064509798106038,3.9717754713853712,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-06-02T13:59:48,codecarbon,d6d4ebcb-7b64-49bd-a1b9-58ac3cd6d19d,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,32367.434696137905,0.5816748921396911,1.7970991448670377e-05,42.5,399.66151206309655,94.34468364715576,0.3818975383083689,4.29628874675047,0.8477334791478729,5.525919764206711,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0