End of training
Browse files- README.md +14 -39
- emissions.csv +1 -1
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -9,8 +9,6 @@ metrics:
|
|
| 9 |
model-index:
|
| 10 |
- name: vulnerability-severity-classification-roberta-base
|
| 11 |
results: []
|
| 12 |
-
datasets:
|
| 13 |
-
- CIRCL/vulnerability-scores
|
| 14 |
---
|
| 15 |
|
| 16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -18,45 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 18 |
|
| 19 |
# vulnerability-severity-classification-roberta-base
|
| 20 |
|
| 21 |
-
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on
|
| 22 |
-
|
| 23 |
It achieves the following results on the evaluation set:
|
| 24 |
-
- Loss: 0.
|
| 25 |
-
- Accuracy: 0.
|
| 26 |
|
| 27 |
## Model description
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
## How to get started with the model
|
| 33 |
-
|
| 34 |
-
```python
|
| 35 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 36 |
-
import torch
|
| 37 |
-
|
| 38 |
-
labels = ["low", "medium", "high", "critical"]
|
| 39 |
-
|
| 40 |
-
model_name = "CIRCL/vulnerability-scores"
|
| 41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 42 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 43 |
-
model.eval()
|
| 44 |
-
|
| 45 |
-
test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
|
| 46 |
-
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
with torch.no_grad():
|
| 50 |
-
outputs = model(**inputs)
|
| 51 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 52 |
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
print("Predictions:", predictions)
|
| 56 |
-
predicted_class = torch.argmax(predictions, dim=-1).item()
|
| 57 |
-
print("Predicted severity:", labels[predicted_class])
|
| 58 |
-
```
|
| 59 |
|
|
|
|
| 60 |
|
| 61 |
## Training procedure
|
| 62 |
|
|
@@ -75,11 +50,11 @@ The following hyperparameters were used during training:
|
|
| 75 |
|
| 76 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 77 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
| 78 |
-
| 0.
|
| 79 |
-
| 0.
|
| 80 |
-
| 0.
|
| 81 |
-
| 0.
|
| 82 |
-
| 0.
|
| 83 |
|
| 84 |
|
| 85 |
### Framework versions
|
|
@@ -87,4 +62,4 @@ The following hyperparameters were used during training:
|
|
| 87 |
- Transformers 4.49.0
|
| 88 |
- Pytorch 2.6.0+cu124
|
| 89 |
- Datasets 3.4.0
|
| 90 |
-
- Tokenizers 0.21.1
|
|
|
|
| 9 |
model-index:
|
| 10 |
- name: vulnerability-severity-classification-roberta-base
|
| 11 |
results: []
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 16 |
|
| 17 |
# vulnerability-severity-classification-roberta-base
|
| 18 |
|
| 19 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
|
|
|
| 20 |
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.5006
|
| 22 |
+
- Accuracy: 0.8308
|
| 23 |
|
| 24 |
## Model description
|
| 25 |
|
| 26 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
## Intended uses & limitations
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
More information needed
|
| 31 |
|
| 32 |
+
## Training and evaluation data
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
More information needed
|
| 35 |
|
| 36 |
## Training procedure
|
| 37 |
|
|
|
|
| 50 |
|
| 51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 52 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
| 53 |
+
| 0.6907 | 1.0 | 26806 | 0.6340 | 0.7465 |
|
| 54 |
+
| 0.5341 | 2.0 | 53612 | 0.5606 | 0.7783 |
|
| 55 |
+
| 0.4568 | 3.0 | 80418 | 0.5162 | 0.8029 |
|
| 56 |
+
| 0.437 | 4.0 | 107224 | 0.5003 | 0.8204 |
|
| 57 |
+
| 0.338 | 5.0 | 134030 | 0.5006 | 0.8308 |
|
| 58 |
|
| 59 |
|
| 60 |
### Framework versions
|
|
|
|
| 62 |
- Transformers 4.49.0
|
| 63 |
- Pytorch 2.6.0+cu124
|
| 64 |
- Datasets 3.4.0
|
| 65 |
+
- Tokenizers 0.21.1
|
emissions.csv
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
-
2025-04-
|
|
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
+
2025-04-24T17:50:45,codecarbon,d248c2a9-dc29-49db-8bbf-9174c4818b38,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22025.923609932885,0.3948230483918265,1.7925379901607204e-05,42.5,183.7675567277129,94.34470081329346,0.25984539876734164,2.9141783866185733,0.5768008005733226,3.7508245859592306,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 498618976
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:221bc25146c5d047b93d332386be1022b03d4872572db55170296dc13a493c3a
|
| 3 |
size 498618976
|