Text Classification
Transformers
Safetensors
roberta
Generated from Trainer
cedricbonhomme commited on
Commit
84a87fd
·
verified ·
1 Parent(s): d33d63a

End of training

Browse files
Files changed (3) hide show
  1. README.md +18 -47
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  library_name: transformers
3
- license: cc-by-4.0
4
  base_model: roberta-base
5
  tags:
6
  - generated_from_trainer
@@ -9,59 +9,30 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification
 
17
 
18
- # Severity classification
19
-
20
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
21
-
22
- The model was presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607) [[arXiv](https://arxiv.org/abs/2507.03607)].
23
-
24
- **Abstract:** VLAI is a transformer-based model that predicts software vulnerability severity levels directly from text descriptions. Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities and achieves over 82% accuracy in predicting severity categories, enabling faster and more consistent triage ahead of manual CVSS scoring. The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
25
-
26
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
27
 
 
 
 
 
28
 
29
  ## Model description
30
 
31
- - Loss: 0.5104
32
- - Accuracy: 0.8285
33
-
34
  More information needed
35
 
36
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
37
 
38
- ## How to get started with the model
39
-
40
- ```python
41
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
42
- import torch
43
-
44
- labels = ["low", "medium", "high", "critical"]
45
-
46
- model_name = "CIRCL/vulnerability-severity-classification-roberta-base"
47
- tokenizer = AutoTokenizer.from_pretrained(model_name)
48
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
49
- model.eval()
50
 
51
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
52
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
53
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
54
 
55
- # Run inference
56
- with torch.no_grad():
57
- outputs = model(**inputs)
58
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
59
 
60
- # Print results
61
- print("Predictions:", predictions)
62
- predicted_class = torch.argmax(predictions, dim=-1).item()
63
- print("Predicted severity:", labels[predicted_class])
64
- ```
65
  ## Training procedure
66
 
67
  ### Training hyperparameters
@@ -79,11 +50,11 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
81
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
82
- | 0.7426 | 1.0 | 28432 | 0.6408 | 0.7432 |
83
- | 0.451 | 2.0 | 56864 | 0.6088 | 0.7640 |
84
- | 0.5408 | 3.0 | 85296 | 0.5352 | 0.7990 |
85
- | 0.4343 | 4.0 | 113728 | 0.5045 | 0.8185 |
86
- | 0.4341 | 5.0 | 142160 | 0.5104 | 0.8285 |
87
 
88
 
89
  ### Framework versions
@@ -91,4 +62,4 @@ The following hyperparameters were used during training:
91
  - Transformers 4.55.2
92
  - Pytorch 2.8.0+cu128
93
  - Datasets 4.0.0
94
- - Tokenizers 0.21.4
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
  base_model: roberta-base
5
  tags:
6
  - generated_from_trainer
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # vulnerability-severity-classification-roberta-base
 
 
 
 
 
 
 
 
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5055
22
+ - Accuracy: 0.8292
23
 
24
  ## Model description
25
 
 
 
 
26
  More information needed
27
 
28
+ ## Intended uses & limitations
29
 
30
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ ## Training and evaluation data
 
 
33
 
34
+ More information needed
 
 
 
35
 
 
 
 
 
 
36
  ## Training procedure
37
 
38
  ### Training hyperparameters
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.7509 | 1.0 | 28516 | 0.6343 | 0.7430 |
54
+ | 0.4746 | 2.0 | 57032 | 0.5834 | 0.7715 |
55
+ | 0.507 | 3.0 | 85548 | 0.5317 | 0.7974 |
56
+ | 0.3822 | 4.0 | 114064 | 0.5055 | 0.8171 |
57
+ | 0.3155 | 5.0 | 142580 | 0.5055 | 0.8292 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.55.2
63
  - Pytorch 2.8.0+cu128
64
  - Datasets 4.0.0
65
+ - Tokenizers 0.21.4
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-08-19T18:23:36,codecarbon,00094c79-e50f-4991-a4b7-c70f8770a685,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,31003.21120994899,0.5509036672436785,1.776924536987615e-05,42.5,315.7355467933024,94.34468507766725,0.3658022772405763,4.055787291849455,0.8120031201139472,5.233592689203979,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-08-25T19:38:50,codecarbon,7b19d616-e6d0-42b8-9642-31e36e1630b1,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22265.02864354197,0.40295547151395544,1.809813398245206e-05,42.5,183.5258822134907,94.34468507766725,0.26267707134264057,2.982324163079646,0.5830814870843721,3.8280827215066586,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:37f7aef563d5a876bcd1219dd79688e43d694f66ff03dab11761dc9c866987cd
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64218e2020a729dea158b8744d946b7482b44cb500e80838baa003af2902b728
3
  size 498618976