cedricbonhomme commited on
Commit
64fb2f1
·
verified ·
1 Parent(s): 7367bba

End of training

Browse files
Files changed (3) hide show
  1. README.md +13 -37
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -16,46 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
20
-
21
- You can read [this post](https://www.vulnerability-lookup.org/2025/02/26/exploring-llm-in-vulnerability-lookup/) for more information.
22
-
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.5068
25
- - Accuracy: 0.8288
26
 
27
  ## Model description
28
 
29
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
30
-
31
-
32
- ## How to get started with the model
33
-
34
- ```python
35
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
36
- import torch
37
-
38
- labels = ["low", "medium", "high", "critical"]
39
 
40
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
41
- tokenizer = AutoTokenizer.from_pretrained(model_name)
42
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
43
- model.eval()
44
 
45
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
46
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
47
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
48
 
49
- # Run inference
50
- with torch.no_grad():
51
- outputs = model(**inputs)
52
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
53
 
54
- # Print results
55
- print("Predictions:", predictions)
56
- predicted_class = torch.argmax(predictions, dim=-1).item()
57
- print("Predicted severity:", labels[predicted_class])
58
- ```
59
 
60
  ## Training procedure
61
 
@@ -74,11 +50,11 @@ The following hyperparameters were used during training:
74
 
75
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
76
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
77
- | 0.7177 | 1.0 | 27141 | 0.6449 | 0.7401 |
78
- | 0.449 | 2.0 | 54282 | 0.5911 | 0.7727 |
79
- | 0.4575 | 3.0 | 81423 | 0.5174 | 0.8015 |
80
- | 0.4397 | 4.0 | 108564 | 0.4977 | 0.8193 |
81
- | 0.3868 | 5.0 | 135705 | 0.5068 | 0.8288 |
82
 
83
 
84
  ### Framework versions
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5141
22
+ - Accuracy: 0.8267
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
33
 
34
+ More information needed
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.688 | 1.0 | 27243 | 0.6592 | 0.7350 |
54
+ | 0.5601 | 2.0 | 54486 | 0.5602 | 0.7764 |
55
+ | 0.4741 | 3.0 | 81729 | 0.5347 | 0.8005 |
56
+ | 0.3537 | 4.0 | 108972 | 0.5066 | 0.8164 |
57
+ | 0.4263 | 5.0 | 136215 | 0.5141 | 0.8267 |
58
 
59
 
60
  ### Framework versions
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-05-19T14:31:46,codecarbon,b0549cdd-487c-4c25-aced-7547e421e1c7,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,30200.185689591046,0.5953149219658064,1.9712293430400685e-05,42.5,183.42897859440293,94.34468364715576,0.3562902715484039,4.508317828318042,0.7908921420590646,5.655500241925523,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-05-23T14:06:40,codecarbon,502c031d-5242-4691-b790-8ba670fb6f5f,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22568.717941163108,0.4037375703996053,1.788925589181244e-05,42.5,226.35816568313916,94.34468364715576,0.2662543288831904,2.9782288748034134,0.5910294683786624,3.8355126720652577,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:de918dcd50a0efd93b6c77a7b06117062f68525c8a0640e2104ac64eefcb08d4
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fba2e0dbc9f6db68753883443dfe7f3db7ddefebbdcbda56f02ebdc60132adc
3
  size 498618976