End of training
Browse files- README.md +15 -37
- emissions.csv +1 -1
README.md
CHANGED
@@ -9,8 +9,6 @@ metrics:
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
12 |
-
datasets:
|
13 |
-
- CIRCL/vulnerability-scores
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,42 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# vulnerability-severity-classification-roberta-base
|
20 |
|
21 |
-
This model is a fine-tuned version of [
|
22 |
-
|
|
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
## How to get started with the model
|
30 |
-
|
31 |
-
```python
|
32 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
33 |
-
import torch
|
34 |
-
|
35 |
-
labels = ["low", "medium", "high", "critical"]
|
36 |
-
|
37 |
-
model_name = "cedricbonhomme/tinyTinyModel"
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
40 |
-
model.eval()
|
41 |
-
|
42 |
-
test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
|
43 |
-
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
|
44 |
|
45 |
-
|
46 |
-
with torch.no_grad():
|
47 |
-
outputs = model(**inputs)
|
48 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
49 |
|
|
|
50 |
|
51 |
-
|
52 |
-
print("Predictions:", predictions)
|
53 |
-
predicted_class = torch.argmax(predictions, dim=-1).item()
|
54 |
-
print("Predicted severity:", labels[predicted_class])
|
55 |
-
```
|
56 |
|
|
|
57 |
|
58 |
## Training procedure
|
59 |
|
@@ -72,11 +50,11 @@ The following hyperparameters were used during training:
|
|
72 |
|
73 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
74 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
|
81 |
|
82 |
### Framework versions
|
@@ -84,4 +62,4 @@ The following hyperparameters were used during training:
|
|
84 |
- Transformers 4.49.0
|
85 |
- Pytorch 2.6.0+cu124
|
86 |
- Datasets 3.3.2
|
87 |
-
- Tokenizers 0.21.0
|
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
16 |
|
17 |
# vulnerability-severity-classification-roberta-base
|
18 |
|
19 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4974
|
22 |
+
- Accuracy: 0.8307
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
## Intended uses & limitations
|
|
|
|
|
|
|
29 |
|
30 |
+
More information needed
|
31 |
|
32 |
+
## Training and evaluation data
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
More information needed
|
35 |
|
36 |
## Training procedure
|
37 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
53 |
+
| 0.4708 | 1.0 | 25773 | 0.6487 | 0.7430 |
|
54 |
+
| 0.5266 | 2.0 | 51546 | 0.5670 | 0.7753 |
|
55 |
+
| 0.5546 | 3.0 | 77319 | 0.5139 | 0.8031 |
|
56 |
+
| 0.4507 | 4.0 | 103092 | 0.5080 | 0.8189 |
|
57 |
+
| 0.4545 | 5.0 | 128865 | 0.4974 | 0.8307 |
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
62 |
- Transformers 4.49.0
|
63 |
- Pytorch 2.6.0+cu124
|
64 |
- Datasets 3.3.2
|
65 |
+
- Tokenizers 0.21.0
|
emissions.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
-
2025-03-
|
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2025-03-11T20:15:08,codecarbon,b7c3a2f3-9527-4fc3-a183-71f65a632d44,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22397.0022299774,0.39311459333379095,1.75521076123136e-05,42.5,187.2567482976426,94.34470081329346,0.26418021162066835,2.8840004138650954,0.5864136130766143,3.7345942385623716,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
|