cedricbonhomme commited on
Commit
111c19f
·
verified ·
1 Parent(s): e767b76

End of training

Browse files
Files changed (2) hide show
  1. README.md +15 -37
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,42 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
 
 
23
 
24
  ## Model description
25
 
26
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
27
-
28
-
29
- ## How to get started with the model
30
-
31
- ```python
32
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
33
- import torch
34
-
35
- labels = ["low", "medium", "high", "critical"]
36
-
37
- model_name = "cedricbonhomme/tinyTinyModel"
38
- tokenizer = AutoTokenizer.from_pretrained(model_name)
39
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
40
- model.eval()
41
-
42
- test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
43
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
44
 
45
- # Run inference
46
- with torch.no_grad():
47
- outputs = model(**inputs)
48
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
49
 
 
50
 
51
- # Print results
52
- print("Predictions:", predictions)
53
- predicted_class = torch.argmax(predictions, dim=-1).item()
54
- print("Predicted severity:", labels[predicted_class])
55
- ```
56
 
 
57
 
58
  ## Training procedure
59
 
@@ -72,11 +50,11 @@ The following hyperparameters were used during training:
72
 
73
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
74
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
75
- | 0.5348 | 1.0 | 25731 | 0.6370 | 0.7410 |
76
- | 0.4628 | 2.0 | 51462 | 0.5785 | 0.7692 |
77
- | 0.5154 | 3.0 | 77193 | 0.5256 | 0.7953 |
78
- | 0.4049 | 4.0 | 102924 | 0.5046 | 0.8145 |
79
- | 0.2862 | 5.0 | 128655 | 0.5110 | 0.8265 |
80
 
81
 
82
  ### Framework versions
@@ -84,4 +62,4 @@ The following hyperparameters were used during training:
84
  - Transformers 4.49.0
85
  - Pytorch 2.6.0+cu124
86
  - Datasets 3.3.2
87
- - Tokenizers 0.21.0
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4974
22
+ - Accuracy: 0.8307
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
31
 
32
+ ## Training and evaluation data
 
 
 
 
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.4708 | 1.0 | 25773 | 0.6487 | 0.7430 |
54
+ | 0.5266 | 2.0 | 51546 | 0.5670 | 0.7753 |
55
+ | 0.5546 | 3.0 | 77319 | 0.5139 | 0.8031 |
56
+ | 0.4507 | 4.0 | 103092 | 0.5080 | 0.8189 |
57
+ | 0.4545 | 5.0 | 128865 | 0.4974 | 0.8307 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.49.0
63
  - Pytorch 2.6.0+cu124
64
  - Datasets 3.3.2
65
+ - Tokenizers 0.21.0
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-03-11T13:42:52,codecarbon,10e7964a-d760-482a-a624-97b76663bf5d,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22333.945179948583,0.3920252870180382,1.755289017947436e-05,42.5,182.39382883775872,94.34470081329346,0.26345167142701137,2.8759955588501214,0.5847985827629493,3.7242458130400817,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-03-11T20:15:08,codecarbon,b7c3a2f3-9527-4fc3-a183-71f65a632d44,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22397.0022299774,0.39311459333379095,1.75521076123136e-05,42.5,187.2567482976426,94.34470081329346,0.26418021162066835,2.8840004138650954,0.5864136130766143,3.7345942385623716,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0