cedricbonhomme commited on
Commit
05a3c54
·
verified ·
1 Parent(s): a4a1076

End of training

Browse files
Files changed (3) hide show
  1. README.md +15 -38
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,45 +16,24 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.5078
25
- - Accuracy: 0.8279
26
 
27
  ## Model description
28
 
29
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
30
-
31
-
32
- ## How to get started with the model
33
-
34
- ```python
35
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
36
- import torch
37
-
38
- labels = ["low", "medium", "high", "critical"]
39
-
40
- model_name = "CIRCL/vulnerability-scores"
41
- tokenizer = AutoTokenizer.from_pretrained(model_name)
42
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
43
- model.eval()
44
 
45
- test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
46
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
47
 
48
- # Run inference
49
- with torch.no_grad():
50
- outputs = model(**inputs)
51
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
52
 
 
53
 
54
- # Print results
55
- print("Predictions:", predictions)
56
- predicted_class = torch.argmax(predictions, dim=-1).item()
57
- print("Predicted severity:", labels[predicted_class])
58
- ```
59
 
 
60
 
61
  ### Training hyperparameters
62
 
@@ -73,11 +50,11 @@ The following hyperparameters were used during training:
73
 
74
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
75
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
76
- | 0.7488 | 1.0 | 26165 | 0.6294 | 0.7406 |
77
- | 0.5932 | 2.0 | 52330 | 0.6006 | 0.7699 |
78
- | 0.3986 | 3.0 | 78495 | 0.5378 | 0.7952 |
79
- | 0.4782 | 4.0 | 104660 | 0.5102 | 0.8172 |
80
- | 0.2724 | 5.0 | 130825 | 0.5078 | 0.8279 |
81
 
82
 
83
  ### Framework versions
@@ -85,4 +62,4 @@ The following hyperparameters were used during training:
85
  - Transformers 4.49.0
86
  - Pytorch 2.6.0+cu124
87
  - Datasets 3.4.0
88
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 1.1168
22
+ - Accuracy: 0.4499
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
33
 
34
+ More information needed
 
 
 
 
35
 
36
+ ## Training procedure
37
 
38
  ### Training hyperparameters
39
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 1.1123 | 1.0 | 26248 | 1.1174 | 0.4499 |
54
+ | 1.076 | 2.0 | 52496 | 1.1196 | 0.4499 |
55
+ | 1.0503 | 3.0 | 78744 | 1.1173 | 0.4499 |
56
+ | 1.1249 | 4.0 | 104992 | 1.1166 | 0.4499 |
57
+ | 1.0597 | 5.0 | 131240 | 1.1168 | 0.4499 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.49.0
63
  - Pytorch 2.6.0+cu124
64
  - Datasets 3.4.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-03-20T13:21:43,codecarbon,dd013514-38bf-4af2-95c1-8ea1bb48f668,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22678.657158810645,0.39802804660826774,1.7550776654059258e-05,42.5,186.2722255320865,94.34470081329346,0.26752504179716097,2.9199066595344902,0.5938404133550726,3.781272114686715,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-03-24T13:07:56,codecarbon,96a6fcc0-faaa-4e28-9045-c84b72eb293c,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22816.120048392564,0.4001257415247599,1.7536975641612187e-05,42.5,183.77782432692922,94.34470081329346,0.26914087106201057,2.934635983540261,0.5974233916833254,3.801200246285588,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:64aa8c06f68c3768cc18550f66bf628420a8f547041fe7352910073cbd9866dd
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b82df347e415cb61fe4551641fb42b700b50db981ecbc1697672e70234dab661
3
  size 498618976