File size: 2,987 Bytes
1d45d2d
 
 
 
 
 
 
 
 
 
 
f5168c8
 
1d45d2d
 
 
 
 
 
 
f5168c8
f02d4a8
1d45d2d
 
 
 
 
 
f02d4a8
1d45d2d
 
f02d4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d45d2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5168c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-distilbert-base-uncased
  results: []
datasets:
- CIRCL/vulnerability-scores
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vulnerability-severity-classification-distilbert-base-uncased

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).

It achieves the following results on the evaluation set:
- Loss: 0.6447
- Accuracy: 0.7595

## Model description

It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.


## How to get started with the model 

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

labels = ["low", "medium", "high", "critical"]

model_name = "vulnerability-severity-classification-distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()

test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)

# Run inference
with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)


# Print results
print("Predictions:", predictions)
predicted_class = torch.argmax(predictions, dim=-1).item()
print("Predicted severity:", labels[predicted_class])
```


## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6379        | 1.0   | 7465  | 0.6355          | 0.7366   |
| 0.5871        | 2.0   | 14930 | 0.6145          | 0.7507   |
| 0.565         | 3.0   | 22395 | 0.6065          | 0.7572   |
| 0.4976        | 4.0   | 29860 | 0.6175          | 0.7620   |
| 0.3684        | 5.0   | 37325 | 0.6447          | 0.7595   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0