--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: cwe-vulnerability-classification-codebert-base results: [] --- # cwe-vulnerability-classification-codebert-base This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.8462 - Accuracy: 0.225 - F1: 0.0092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 4.8896 | 1.0 | 23 | 4.3198 | 0.225 | 0.0092 | | 4.223 | 2.0 | 46 | 3.9716 | 0.225 | 0.0092 | | 4.0284 | 3.0 | 69 | 3.8691 | 0.225 | 0.0092 | | 3.841 | 4.0 | 92 | 3.8462 | 0.225 | 0.0092 | ### Framework versions - Transformers 4.54.1 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4