File size: 1,796 Bytes
3a7aae5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: cwe-vulnerability-classification-codebert-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cwe-vulnerability-classification-codebert-base
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8462
- Accuracy: 0.225
- F1: 0.0092
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 4.8896 | 1.0 | 23 | 4.3198 | 0.225 | 0.0092 |
| 4.223 | 2.0 | 46 | 3.9716 | 0.225 | 0.0092 |
| 4.0284 | 3.0 | 69 | 3.8691 | 0.225 | 0.0092 |
| 3.841 | 4.0 | 92 | 3.8462 | 0.225 | 0.0092 |
### Framework versions
- Transformers 4.54.1
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|