--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - CH0KUN/autotrain-data-TNC_Data1000_wangchanBERTa co2_eq_emissions: 0.03882318406133382 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 927730545 - CO2 Emissions (in grams): 0.03882318406133382 ## Validation Metrics - Loss: 0.346664160490036 - Accuracy: 0.9212962962962963 - Macro F1: 0.9193830593356196 - Micro F1: 0.9212962962962963 - Weighted F1: 0.9213272351125573 - Macro Precision: 0.920255423800781 - Micro Precision: 0.9212962962962963 - Weighted Precision: 0.9231182355921642 - Macro Recall: 0.920208415963133 - Micro Recall: 0.9212962962962963 - Weighted Recall: 0.9212962962962963 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```