File size: 20,101 Bytes
a97d679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
---
language:
- fr
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:12227
- loss:SpladeLoss
- loss:SparseCosineSimilarityLoss
- loss:FlopsLoss
base_model: almanach/camembert-large
widget:
- text: Une femme, un petit garçon et un petit bébé se tiennent devant une statue
    de vache.
- text: En anglais, l'utilisation la plus courante de do est certainement Do-Support.
- text: Je ne pense pas que la charge de la preuve repose sur des versions positives
    ou négatives.
- text: Cinq lévriers courent sur une piste de sable.
- text: J'envisage de dépenser les 48 dollars par mois pour le système GTD (Getting
    things done) annoncé par David Allen.
datasets:
- CATIE-AQ/frenchSTS
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- active_dims
- sparsity_ratio
model-index:
- name: CSR Sparse Encoder
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.730659053269462
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7229701164875609
      name: Spearman Cosine
    - type: active_dims
      value: 239.04523468017578
      name: Active Dims
    - type: sparsity_ratio
      value: 0.9416393470019102
      name: Sparsity Ratio
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.7536670661877773
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7255882185109458
      name: Spearman Cosine
    - type: active_dims
      value: 229.7224884033203
      name: Active Dims
    - type: sparsity_ratio
      value: 0.9439154081046581
      name: Sparsity Ratio
---

# CSR Sparse Encoder

This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [almanach/camembert-large](https://huggingface.co/almanach/camembert-large) on the [french_sts](https://huggingface.co/datasets/CATIE-AQ/frenchSTS) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space  with 256 maximum active dimensions  and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [almanach/camembert-large](https://huggingface.co/almanach/camembert-large) <!-- at revision df7dbf5 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [french_sts](https://huggingface.co/datasets/CATIE-AQ/frenchSTS)
- **Language:** fr
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'CamembertModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): SparseAutoEncoder({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("bourdoiscatie/SPLADE_camembert-large_STS")
# Run inference
sentences = [
    "Oui, je peux vous dire d'après mon expérience personnelle qu'ils ont certainement sifflé.",
    "Il est vrai que les bombes de la Seconde Guerre mondiale faisaient un bruit de sifflet lorsqu'elles tombaient.",
    "J'envisage de dépenser les 48 dollars par mois pour le système GTD (Getting things done) annoncé par David Allen.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.3673, 0.2794],
#         [0.3673, 1.0000, 0.2023],
#         [0.2794, 0.2023, 1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `sts-dev` and `sts-test`
* Evaluated with [<code>SparseEmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseEmbeddingSimilarityEvaluator)

| Metric              | sts-dev   | sts-test   |
|:--------------------|:----------|:-----------|
| pearson_cosine      | 0.7307    | 0.7537     |
| **spearman_cosine** | **0.723** | **0.7256** |
| active_dims         | 239.0452  | 229.7225   |
| sparsity_ratio      | 0.9416    | 0.9439     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### french_sts

* Dataset: [french_sts](https://huggingface.co/datasets/CATIE-AQ/frenchSTS) at [47128cc](https://huggingface.co/datasets/CATIE-AQ/frenchSTS/tree/47128cc18c893e5b93679037cdca303849e05309)
* Size: 12,227 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 11.75 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.79 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                           | sentence2                                           | score                            |
  |:----------------------------------------------------|:----------------------------------------------------|:---------------------------------|
  | <code>Un avion est en train de décoller.</code>     | <code>Un avion est en train de décoller.</code>     | <code>1.0</code>                 |
  | <code>Un homme est en train de fumer.</code>        | <code>Un homme fait du patinage.</code>             | <code>0.10000000149011612</code> |
  | <code>Une personne jette un chat au plafond.</code> | <code>Une personne jette un chat au plafond.</code> | <code>1.0</code>                 |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')",
      "document_regularizer_weight": 0.003
  }
  ```

### Evaluation Dataset

#### french_sts

* Dataset: [french_sts](https://huggingface.co/datasets/CATIE-AQ/frenchSTS) at [47128cc](https://huggingface.co/datasets/CATIE-AQ/frenchSTS/tree/47128cc18c893e5b93679037cdca303849e05309)
* Size: 3,526 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 19.13 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.05 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.43</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                | sentence2                                                                   | score                          |
  |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
  | <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>1.0</code>               |
  | <code>Un jeune enfant monte à cheval.</code>                             | <code>Un enfant monte à cheval.</code>                                      | <code>0.949999988079071</code> |
  | <code>Un homme donne une souris à un serpent.</code>                     | <code>L'homme donne une souris au serpent.</code>                           | <code>1.0</code>               |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')",
      "document_regularizer_weight": 0.003
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `bf16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
| -1     | -1   | -             | -               | 0.4890                  | -                        |
| 0.1307 | 100  | 0.0458        | -               | -                       | -                        |
| 0.2614 | 200  | 0.0447        | -               | -                       | -                        |
| 0.3922 | 300  | 0.0468        | -               | -                       | -                        |
| 0.5229 | 400  | 0.0416        | -               | -                       | -                        |
| 0.6536 | 500  | 0.0398        | -               | -                       | -                        |
| 0.7843 | 600  | 0.0397        | -               | -                       | -                        |
| 0.9150 | 700  | 0.0398        | -               | -                       | -                        |
| 1.0    | 765  | -             | 0.0417          | 0.6801                  | -                        |
| 1.0458 | 800  | 0.0368        | -               | -                       | -                        |
| 1.1765 | 900  | 0.0296        | -               | -                       | -                        |
| 1.3072 | 1000 | 0.0288        | -               | -                       | -                        |
| 1.4379 | 1100 | 0.0285        | -               | -                       | -                        |
| 1.5686 | 1200 | 0.0264        | -               | -                       | -                        |
| 1.6993 | 1300 | 0.0251        | -               | -                       | -                        |
| 1.8301 | 1400 | 0.0256        | -               | -                       | -                        |
| 1.9608 | 1500 | 0.0253        | -               | -                       | -                        |
| 2.0    | 1530 | -             | 0.0368          | 0.7083                  | -                        |
| 2.0915 | 1600 | 0.0197        | -               | -                       | -                        |
| 2.2222 | 1700 | 0.0151        | -               | -                       | -                        |
| 2.3529 | 1800 | 0.0156        | -               | -                       | -                        |
| 2.4837 | 1900 | 0.0155        | -               | -                       | -                        |
| 2.6144 | 2000 | 0.0141        | -               | -                       | -                        |
| 2.7451 | 2100 | 0.0134        | -               | -                       | -                        |
| 2.8758 | 2200 | 0.0137        | -               | -                       | -                        |
| 3.0    | 2295 | -             | 0.0352          | 0.7230                  | -                        |
| -1     | -1   | -             | -               | -                       | 0.7256                   |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.0.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 2.16.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->